

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
CPC701	Digital Signal Processing	4	-		4	-		4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite C	ourse C	todes -			
At end of successful completion of this course, student will be able to					
	CO1	Understand the concept of DT Signal and perform signal manipulation			
Course	CO2	Perform analysis of DT system in time domain			
Outcomes	CO3	Develop FFT flow-graph and Fast DSP Algorithms.			
	CO4	Design DSP System for Real Time Signal Processing			

Module	Topics		Hrs.
No.			
1	Discrete Time Signal	1,3,	12
	Introduction to Digital Signal Processing, Discrete Time	4,8	
	Signals, Sampling and Reconstruction, Standard DT Signals, Concept of		
	Digital Frequency, Representation of DT signal using Standard DT		
	Signals, Signal Manipulations(shifting, addition, subtraction,		
	multiplication), Classification of Signals, Linear Convolution		
	formulation(without mathematical proof), Circular Convolution		
	formulation(without mathematical proof), Matrix Representation of		
	Circular Convolution, Linear by Circular Convolution. Auto and Cross		
	Correlation formula evaluation		
2	Discrete Time System	1,2,	08
	Introduction to Discrete Time System, Classification of DT	3,4,	
	Systems(Linear/Non Linear, Causal/Non Causal, Time Invariant/Time	7	
	VariantSystems, Stable/ Unstable), BIBO Time Domain Stability		
	Criteria. LTIsystem, Concept of Impulse Response and Step Response,		
	Concept of IIR System and FIR System, Output of IIR and FIR		
	DTsystem using Time Domain Linear Convolution formula Method.		
3	Discrete Fourier Transform	1,3,	08
	Introduction to DTFT, DFT, Relation between DFT and DTFT,	8	
	Properties of DFT without mathematical proof (Scaling and Linearity,		
	Periodicity, Time Shift and Frequency Shift, Time Reversal,		
	Convolution Property and Parsevals' Energy Theorem). DFT		
	computation using DFT properties, Transfer function of DT System in		
	frequency domain using DFT. Linearand Circular Convolution using		
	DFT. Response of FIR system calculationin frequency domain using		
	DFT.		

Talva we on VS-VOO

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4	Fast Fourier Transform	1,3,	06				
	Radix-2 DIT-FFT algorithm, DIT-FFT Flowgraph for N=4, 6 & 8,	8					
	InverseFFT algorithm. Spectral Analysis using FFT, Comparison of						
	complex andreal, multiplication and additions of DFT and FFT.						
5	DSP Algorithms	1,3,	08				
	Carls' Correlation Coefficient Algorithm, Fast Circular	8,9					
	ConvolutionAlgorithm, Fast Linear Convolution Algorithm, Linear FIR						
	filteringusing Fast Overlap Add Algorithm and Fast Overlap Save						
	Algorithm.						
6	DSP Processors and Application of DSP						
	Need for Special architecture of DSP processor, Difference between						
	DSPprocessor& microprocessor, A general DSP processor						
	TMS320C54XXseries, Case study of Real Time DSP applications to						
	Speech SignalProcessing and Biomedical Signal Processing.						
	· · · · · · · · · · · · · · · · · · ·	Total	48				

References:

- Ashok Ambardar, 'Digital Signal Processing', Cengage Learning, 2007, ISBN : 978-81-315-0179-5.
- [2] Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing: A Practical Approach", Pearson Education ISBN 0-201-59619- 9
- [3] S. Salivahanan, A. Vallavaraj, C. Gnanapriya, 'Digital Signal Processing' TataMcgraw Hill Publication First edition (2010). ISBN 978-0-07-066924-6.
- [4] AvtarSignh, S.Srinivasan,"Digital Signal Processing', Thomson Brooks/Cole, ISBN : 981-243-254-4
- [5] B. Venkatramani, M. Bhaskar, "Digital Signal Processor", TataMcGraw Hill, Second Edition, (2001). ISBN : 978-0-07-070256-1.
- [6] SanjitMitra, 'Digital Signal Processing : A Computer Based Approach' , TataMcGraw Hill, Third Edition
- [7] Dr, ShailaApte, "Digital Signal Processing,", Wiley India, Second Edition, 2013ISBN : 978-81-2652142-5
- [8] ProakisManolakis, 'Digital Signal Processing : Principles, Algorithms and Applications' Fourth 2007, Pearson Education, ISBN 81-317-1000-9.
- [9] Monson H. Hayes, "Schaums Outline of Digital Signal Processing" McGraw Hill Internationalsecond edition. ISBN : 978-00-7163509-7