

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	Elective-IIAdvanced Algorithms	4	-	-	4	-	-	4
CPE7021		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			tage)

Pre-requisite Course Codes	CSC303 (Data Structure)			
_	CSC402 (Analysis of Algorithm)			
At end of successful completion of this course, student will be able to				
	CO1	Able to design algorithms and employ appropriate advanced data structures for solving computing problems efficiently;		
	CO2	Able to analyze the various algorithms from different domains		
Common Outlines	CO3	Have an idea of applications of algorithms in a variety of areas,		
Course Outcomes		including linear programming, computational geometry and		
		maximum flow.		
	CO4	To understand the role of Optimization by using linear programing.		

Module	e Topics		Hrs.
No.			
1	Introduction		03
	1.1 Asymptotic notations Big O, Big Θ , Big Ω , O , O notations		
	,Proofs of master theorem, applyingtheorem to solve problems		
2	Advanced Data Structures	1,2	09
	2.1 Red-Black Trees: properties of red-black trees, Insertions,		
	Deletions		
	2.2 B-Trees and its operations		
	2.3Binomial Heaps: Binomial trees and binomial heaps, Operation on		
	Binomial heaps		
3	Dynamic Programing	1,2	06
	3.1 matrix chain multiplication, cutting rod problem and its analysis		
4	Graph algorithms	1,2	06
	4.1 Bellman ford algorithm, Dijkstra algorithm, Johnson's All		
	pairshortest path algorithm for sparse graphs		
5	Maximum Flow		08
	5.1 Flow networks, the ford Fulkerson method, max bipartitematching,		
	push Relabel Algorithm, The relabel to frontalgorithm		
6	Linear Programing		08
	6.1Standard and slack forms, Formulating problems as linearprograms,		
	simplex algorithm, Duality, Initial basic feasiblesolution		
7	Computational Geometry	1,2	08

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

intersects, finding the convex hull, Finding the closestpair of points.	Total	10
7.1 Line Segment properties, Determining whether any pair of segment		

References:

- [1] T.H. Coreman , C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms",2nd edition , PHI publication 2005
- [2] Ellis Horowitz ,SartajSahni , S. Rajsekaran. "Fundamentals of computer algorithms" University press