Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
CPEL7025	Elective-II Soft Computing Lab			2			1	1
		Examination Scheme						
		ISE		ES	SE Total		Total	
		Pra		Prac	ctical	0	ral	
		4	0		-		20	60

Pre-requisite Course Codes		CPE7025(Soft Computing)	
At end of successful completion of this course, student will be able to			
	C01	Differentiate various Transfer Functions.	
Course Outcomes	CO2	Apply the supervised and unsupervised learning algorithm.	
Course Outcomes	CO3	Apply & design fuzzy controller system.	
	CO4	Apply Genetic algorithm for basic optimization problem.	

Exp. No.	Experiment Details			Ref.	Marks
1	To implement Mc-Culloch Pitts Model.			1-5	5
2	To implement Transfer/Activation Functions.				5
	i) A symmetric hard limit transfer function.				
	ii) A Bin	A Binary step activation function.			
	iii) A Bip	olar step activation			
	iv) A sat	urating linear transf			
	v) Ahyı	perbolic tangent sigmoid (tansig) transfer function.			
	vi) A log	-sigmoid transfer fu	nction		
3	To implement Basic Neural Network learning rules.				5
	PROBLEM TO DIS				
	A produce dealer				
	vegetables.Wher				
	fruits may be mix				
	the fruit accordin				
	loaded .This conv				
	three properties				
	Bias= < Any Value				
	Type of sensor				
	Type of sensor	Output of sensor	condition		
	Shape sensor	1	if fruit is approx. round		
		0	if fruit is elliptical.		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Texture	1	If surface is smooth		
	Sensor				
		0	If surface is rough		
	Fruit sensor	1	Apple		
		0	Orange		
	A) Design a				
	Editor.				
	B) Write a C++/JAVA/Python program to design a perceptron to				
	recognize	e these patterns.			
4	To implement H	t Heabbian Learning algorithm.			5
5	To implement Multi layer Perceptron Learning algorithm.			1-5	5
6	To implement Fuzzy Sets and Fuzzy Relations			1-5	5
7	To implement Fuzzy Controllers			1-5	5
8	To implement a simple application using Genetic Algorithm.			1-5	5
Total Marks					40

References:

- [1] Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.
- [2] S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- [3] S.Rajasekaran and G.A.VijayalakshmiPai "Neural Networks, Fuzzy Logic and Genetic Algorithms" PHI Learning.
- [4] Satish Kumar "Neural Networks A Classroom Approach" Tata McGrawHill.
- [5] Hagan, Demuth, Beale, "Neural Network Design" CENGAGE Learning, India Edition.