

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
CPE8031	Elective-III Machine Learning	4		-	4		-	4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes		Codes -			
At end of successful completion of this course, student will be able to					
	CO1	Ability to analyze and appreciate the applications which can			
		use Machine Learning Techniques			
Commo	CO2	Ability to understand regression, classification, clustering methods.			
Course	CO3	Ability to understand the difference between supervised and			
Outcomes		unsupervised learning methods.			
	CO4	Ability to appreciate Dimensionality reduction techniques.			
	CO5	Students would understand the working of Reinforcement learning.			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Machine Learning:	1,2,3,4	6
		What is Machine Learning? , Key Terminology, Types of Machine		
		Learning, Issues in Machine Learning, Applications of Machine		
		Learning, How to choose Right Algorithm, Steps in Developing a		
		Machine Learning Application		
2	2.1	Learning with Regression:	1,2,4,5	4
		Linear Regression, Logistic Regression		
3	3.1	Learning with Trees:	1,2,7	8
		Using Decision Trees, Constructing Decision Trees, Classification		
		and Regression Trees (CART)		
4	4.1	Support Vector Machine:	1,2,4	6
		Maximum Margin Linear Separator, Quadratic Programming		
		Solution to finding maximum margin separators, Kernels for learning		
		non-linear functions		
5	5.1	Learning with Classification:	1,2,6	6
		Rule based Classification, Classification by Back propagation,		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Bayesian Belief Networks, Hidden Markov Model		
6	6.1	Dimensionality Reduction:	1,2,5	6
		Dimensionality Reduction Techniques, Principal Component		
		Analysis, Independent Component Analysis		
7	7.1	Learning with Clustering:	1,2,6	6
•		K-means Clustering, Hierarchical Clustering, Expectation	1,2,0	0
		Maximization Algorithm, Supervised Learning after Clustering,		
		Radial Basis Functions		
8	8.1	Reinforcement Learning:	1,2,6	6
		Introduction, Elements of Reinforcement Learning, Model based		
		Learning, Temporal Difference Learning, Generalization, Partially		
		Observable States		
	1		Total	48

References:

- [1] Peter Harrington "Machine Learning In Action", DreamTech Press.
- [2] EthemAlpaydın, "Introduction to Machine Learning", MIT Press.
- [3] Tom M.Mitchell "Machine Learning" McGraw Hill.
- [4] Stephen Marsland, "Machine Learning An Algorithmic Perspective" CRC Press.
- [5] William W.Hsieh, "Machine Learning Mehods in the Environmental Sciences", Cambridge.
- [6] Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers.
- [7] Margaret.H.Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.