Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
CPC803	Parallel and Distributed System	4	-		4	-		4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes		rse Codes -				
At end of successful completion of this course, student will be able to						
	CO1	Apply the principles and concept in analyzing and designing the parallel and				
Course Outcomes		distributedsystem				
	CO2	Reason about ways to parallelize problems.				
	CO3	Gain an appreciation on the challenges and opportunities faced by parallel				
		and distributed systems.				
	CO4	Understand the middleware technologies that support distributed				
		applications such asRPC, RMI and object based middleware.				
	CO5	Improve the performance and reliability of distributed and parallel				
		programs.				

Module	Topics		Hrs.
No.			
1	Introduction	1-4	06
	Parallel Computing, Parallel Architecture, Architectural		
	ClassificationScheme, Performance of Parallel Computers,		
	Performance Metrics forProcessors, Parallel Programming Models,		
	Parallel Algorithms.		
2	Pipeline Processing	1-4	06
	Introduction, Pipeline Performance, Arithmetic Pipelines,		
	PipelinedInstruction Processing, Pipeline Stage Design, Hazards,		
	DynamicInstruction Scheduling,		
3	Synchronous Parallel Processing	1-4	06
	Introduction, Example-SIMD Architecture and Programming		
	Principles, SIMD Parallel Algorithms, Data Mapping and memory		
	in arrayprocessors, Case studies of SIMD parallel Processors	1.4	0.6
4	Introduction to Distributed Systems	1-4	06
	Definition, Issues, Goals, Types of distributed systems,		
	Distributed System Models, Hardware concepts, Software Concept,		
	Models of Middleware, Services offered by middleware, Client Server		
		1 4	0.4
5	Communication	1-4	04
	Layered Protocols, Remote Procedure Call, Remote Object		
	invocation, viessage Oriented Communication, Stream Oriented		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Communication		
6	Resource and Process Management	1-4	06
	Desirable Features of global Scheduling algorithm, Task		
	assignmentapproach, Load balancing approach, load sharing approach,		
	Introductionto process management, process migration, Threads,		
	Virtualization, Clients, Servers, Code Migration		
7	Synchronization	1-4	08
	Clock Synchronization, Logical Clocks, Election Algorithms,		
	MutualExclusion, Distributed Mutual Exclusion-Classification of		
	mutualExclusion Algorithm, Requirements of Mutual Exclusion		
	Algorithms, Performance measure, Non Token based Algorithms:		
	Lamport Algorithm, Ricart-Agrawala's Algorithm, Maekawa's		
	Algorithm		
	Token Based Algorithms: Suzuki-Kasami'sBroardcast		
	Algorithms, Singhal's Heurastic Algorithm, Raymond's Tree based		
	Algorithm, Comparative Performance Analysis.		
8	Consistency and Replication	1-4	06
	Introduction, Data-Centric and Client-Centric Consistency Models,		
	Replica Management. Distributed File Systems		
	Introduction, good features of DFS, File models, File Accessing		
	models, File-Caching Schemes, File Replication, Network File		
	System(NFS), Andrew File System(AFS), HadoopDistributed File		
	System and MapReduce.		
		Total	48

References:

- [1] M.R. Bhujade, "Parallel Computing", 2nd edition, New Age International Publishers 2009.
- [2] Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems: Principles and
- [3] George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems: Concepts and Design" (4th Edition), Addison Wesley/Pearson Education.
- [4] Pradeep K Sinha, "Distributed Operating Systems : Concepts and design", IEEE computer society press