

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
		4			4			4
EXC701	Embedded System Design	Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			tage)

Pre-requisite Course Codes		Codes EXC403: Microprocessor and Peripherals		
		EXC501: Microcontroller & Applications		
After successful completion of the course, student will be able to				
	CO1	Discuss the fundamentals of embedded systems and communication protocols		
	CO2	Decide the use of MSP430, ARM and Reconfigurable hardware for given		
Course	Course applications			
Outcomes	s CO3 Examine the working of Real time operating systems			
	CO4	Compare Simulation, testing and debugging methods		
	CO5	Design Embedded System for given application		

Module	Unit	Topics		Hrs.	
No.	No.			11150	
1		Fundamentals of Embedded System		08	
	1.1	Core of the embedded system, Memory, Sensors (resistive, optical,	1,5		
		position, thermal) and Actuators (solenoid valves, relay/switch,			
		opto-couplers), Communication Interface, Embedded firmware			
		(RTOs, Drivers, Application programs), Power-supply (Battery			
		technology, Solar), PCB and Passive components, Safety and			
		reliability, environmental issues. Ethical practice.			
	1.2	Characteristics and quality attributes (Design Metric) of embedded	1,5		
		system. Real time system's requirements, real time issues, interrupt			
		latency.			
	1.3	Embedded Product development life cycle, Program modeling	1,5,3		
		concepts: DFG, FSM, Petri-net, UML			
2		Embedded Serial Communication		04	
	2.1	Study of basic communication protocols like SPI, SCI (RS232,	1,5		
		RS485), I2C, CAN, Field-bus (Profibus), USB (v2.0), Bluetooth, Zig-			
		Bee, Wireless sensor network			
3		Embedded Hardware and Design		12	
	3.1	Low power hardware design (MSP430 / Cortex-M3 based Real time	11		
		clock and PWM dc motor control as a case study using on chip timers			
		and watch-dog-timers).			
	3.2	Introduction to ARM-v7-M (Cortex-M3), Comparison of ARM-v7-A	3,8,9		
		(CortexA8), ARM-v7-R (CortexR4), ARM-v7-M (Cortex-M3)			
	3.3	Direct digital solution using CPLD, FPGA, its advantages, and	3,8		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		introduction to related development methodology		
4		Embedded Software, Firmware Concepts and Design		
	4.1	Embedded C-programming concepts (from embedded system point of view): Optimizing for Speed/Memory needs, Interrupt service routines, macros, functions, modifiers, data types, device drivers, Multithreading programming. (Laboratory work on J2ME Java mobile application).	1,5	
	4.3	Real time operating system: POSIX Compliance, Need of RTOS in Embedded system software, Foreground/Background systems, multitasking, context switching, IPC, Scheduler policies, Architecture of kernel, task scheduler, ISR, Semaphores, mailbox, message queues, pipes, events, timers, memory management, RTOS services in contrast with traditional OS.	1,5	
	4.4	Introduction to μ COS-II RTOS, study of kernel structure of μ COS-II, Synchronization in μ COS-II, Inter-task communication in μ COS-II, Memory management in μ COS-II, porting of RTOS on ARM-v7 (emulation) board, Application developments using μ COS-II.	4	
	4.5	Introduction Linux OS, Linux IPC usage, basic device (drivers) usage.		
5		Simulation, Testing and Debugging Methodology and Tools		04
	5.1	GNU Debugger (gdb), Boundary-Scan/JTAG interface concepts, Black-box, White-box testing, Hardware emulation, logic analyzer.	1,5	
6 Embedded Syste		Embedded System Designing		08
	6.1	Requirement analysis, Hardware blocks diagram, System model (like FSM, UML), Software architectures (modules, drivers). And Component/hardware selection, covering following cases: Hard real time/ Mission critical: Missile, Car cruise control, medical monitoring systems, process control system (temp, pressure) Soft real time: Automated vending machines, digital camera, media- player. Communication: Embedded web servers, routers, Wireless (sensor) networks.	1,5,2	
			Total	52

References:

- [1] Embedded Systems, Rajkamal, TMH, Edition 2008.
- [2] Frank Vahid Embedded Systems, Wiley India, Edition 2002
- [3] ARM System-on-Chip Architecture, Steve Furber Pearson Edition 2005
- [4] Jean J Labrose MicroC / OS-II, Indian Low Price Edition 2002
- [5] DR.K.V.K.K. Prasad Embedded / real time system, Dreamtech
- [6] Iyer, Gupta Embedded real systems Programming, TMH

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [7] Embedded systems software primer, David Simon Pearson
- [8] ARM System Developers Guide- Sloss, Symes, Wright, ElsevierMorgan Kaufman, Edition 2005
- [9] LPC2148 Data Sheets www.arm.com
- [10] ARM Programers/architectural manual.
- [11] MSP430 architectural manual.

[12] Embedded Microcomputer Systems – Real Time Interfacing – Jonathan W. Valvano; Cengage Learning; Third or later edition.