

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
EXC801	CMOS VLSI Design	4			4			4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes		se Codes	EXC302: Electronic Devices				
			EXC303: Digital Circuits and Design				
			EXC402: Discrete Electronic Circuits				
			EXC502: Design With Linear Integrated Circuits				
			EXC601: VLSI Design				
			EXC702: IC Technology				
After successful completion of the course, student will be able to							
	CO1	Recognize tradeoffs involved in analog VLSI Circuits					
	CO2	Analyze basic building blocks of CMOS analog VLSI circuits					
Course	CO3	Evaluate	MOSFET based single stage and differential amplifiers				
Outcomes	CO4	Design MOSFET based operational amplifier					
	CO5	Analyze 1	mixed signal circuits				
	CO6	Describe	layout techniques for analog circuits				

Module No.	Unit No.	Topics		Hrs.
1		CMOS analog building blocks		08
	1.1	MOS Models: Necessity of CMOS analog design, Review of	1	
		characteristics of MOS device, MOS small signal model, MOS spice models		
	1.2	Passive and Active Current Mirrors: Basic current mirrors, Cascode current mirrors and Active current mirrors	1	
	1.3	Band Gap References: General Considerations, Supply-independent biasing, Temperature independent references, PTAT current generation and Constant Gm biasing	1	
2		Single Stage Amplifiers		10
	2.1	Configurations: Basic concepts, Common source stage, Source follower, Common gate stage, Cascode stage	1	
	2.2	Frequency Response and Noise: General considerations, Common- source stage, Source followers, Common-gate stage, Cascode stage and Noise in single stage amplifiers	1	
3		Differential Amplifiers		10
	3.1	Configurations: Single ended and differential operation, Basic differential pair, Common-mode response, Differential pair with MOS loads, Gilbert cell	1	
	3.2	Frequency response and noise in differential pair	1	

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4		MOS Operational Amplifiers			
	4.1	Op-amp Design: General Considerations, performance parameters,	1,3,5		
		One-stage op-amps, Two-stage op-amps, Gain Boosting, Common-			
		mode feedback. Input range limitations. Slew Rate, Power supply			
		rejection. Noise in op-amps			
	4.2	Stability and Frequency Compensation: General Considerations,			
		Multipole systems, Phase margin, Frequency compensation,			
		compensation of two stage op-amps			
5		Mixed Signal Circuits		10	
	5.1	Switch Capacitor Circuits: MOSFETs as switches, Speed	1		
		considerations, Precision Considerations, Charge injection			
		cancellation. Unity gain buffer. Non-inverting amplifier and integrator			
	5.2	Oscillators: General considerations Ring oscillators LC oscillators			
	0.2	VCO			
	5.3	Phase-Locked Loop: Simple PLL, Charge pump PLL, Nonideal	1		
		effects in PLL. Delay locked loops and applications of PLL in			
		integrated circuits			
6		Analog Layout and other concepts		04	
	6.1	Analog Layout Techniques: Antenna effect, Resistor matching,	1,2		
		capacitor matching, current mirror matching, floorplanning, shielding	,		
		and guard rings			
	6.2	AMS design flow, ASIC, Full custom design, Semi custom design.	1		
		System on Chip. System in package. Hardware software co-design			
			Total	52	
1					

References:

[1] B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, First Edition.

[2] R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Stimulation", Wiley, Student Edition

[3] P. E. Allen and D. R. Holberg, "CMOS Analog Circuit Design", Oxford University Press, Third Edition.

[4] Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, Fifth Edition