

## **Sardar Patel Institute of Technology** Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

| Course<br>Code | Course Name                | Teaching Scheme<br>(Hrs/week) |   |      | Credits Assigned |   |     |       |
|----------------|----------------------------|-------------------------------|---|------|------------------|---|-----|-------|
|                |                            | L                             | Т | P    | L                | Τ | Р   | Total |
| EXL803         | MEMS Technology Laboratory |                               |   | 2    |                  |   | 1   | 1     |
|                |                            | Examination Scheme            |   |      |                  |   |     |       |
|                |                            | ISE                           |   | ES   | SE Tot           |   |     |       |
|                |                            |                               |   | Prac | ctical           |   | ral |       |
|                |                            | 4                             | 0 | -    | -                |   | 20  | 60    |

| Pre-requisite Co                                                   | urse Co | des EXC803 (MEMS Technology)                                         |  |  |  |
|--------------------------------------------------------------------|---------|----------------------------------------------------------------------|--|--|--|
| After successful completion of the course, student will be able to |         |                                                                      |  |  |  |
|                                                                    | CO1     | Design and simulate MEMS devices and system using Industry graded    |  |  |  |
|                                                                    |         | simulation tools like COMSOL and Coventorware.                       |  |  |  |
| Course                                                             | CO2     | Determine characteristics of given MEMS device using Hardware setup. |  |  |  |
| Outcomes                                                           | CO3     | Design and simulate MEMS devices and system using open source        |  |  |  |
|                                                                    |         | simulation tools like sugar.                                         |  |  |  |
|                                                                    | CO4     | Relate the given literature with the studied concepts of MEMS.       |  |  |  |

| Exp. No. | Experiment Details                                                       | Ref.  | Marks |
|----------|--------------------------------------------------------------------------|-------|-------|
| 1        | Aim: To analyze MEMS cantilever in Matlab.                               | 1,2,4 | 05    |
|          | Problem Statement: For the given MEMS cantilever with given              |       |       |
|          | dimensions and uniformly distributed load a) To plot the variation in    |       |       |
|          | stiffness constant (K) for varying length (L) keeping its width (W),     |       |       |
|          | thickness (h) constant and different values of effective length          |       |       |
|          | $(\lambda r = L/Lc)$ of uniformly distributed load.                      |       |       |
|          | b) To plot the variation in stiffness constant (K) for varying width (W) |       |       |
|          | keeping its length (L), thickness (h) constant and different values of   |       |       |
|          | effective length ( $\lambda r=L/Lc$ ) of uniformly distributed load.     |       |       |
|          | c) To plot the variation in stiffness constant (K) for varying thickness |       |       |
|          | (h) keeping its width (W), length (L) constant and different values of   |       |       |
|          | effective length ( $\lambda r=L/Lc$ ) of uniformly distributed load      |       |       |
| 2        | <b>Aim:</b> To model MEMS cantilever in COMSOL Multiphysics.             | 1,2,4 | 05    |
|          | Problem Statement: For the given dimensions and material create          |       |       |
|          | MEMS cantilever model in COMSOL and observe the dependence of            |       |       |
|          | resonance frequency of the cantilever on material.                       |       |       |



## **Sardar Patel Institute of Technology** Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

| 3 | Aim: To analyze MEMS cantilever in COMSOL Multiphysics.                 | 1,2,4 | 05 |
|---|-------------------------------------------------------------------------|-------|----|
|   | Problem Statement: For the cantilever model analyze dependence of       |       |    |
|   | fundamental resonance frequency on varying length (given range), plot   |       |    |
|   | the result and also compare the result with analytical expression of    |       |    |
|   | resonance frequency.                                                    |       |    |
| 4 | Aim: To analyze MEMS Piezoelectric Harvester model.                     | 1,2,3 | 05 |
|   | Problem Statement: Choose the proper configuration, dimensions and      |       |    |
|   | the method of conversion (converter) for obtaining dc voltage from ac   |       |    |
|   | voltage generated by the MEMS Piezoelectric Harvester. Obtain the       |       |    |
|   | output voltage graph for any two different substrates materials against |       |    |
|   | Silicon as a substrate material.                                        |       |    |
| 5 | Aim: To analyze MEMS cantilever in Sugar Tool.                          | 1,2,3 | 05 |
|   | Problem Statement: Choose the proper dimensions of MEMS                 |       |    |
|   | cantilever modeled in Sugar. Choose the proper co-ordinate and node     |       |    |
|   | for applied point contact force. Observe and tabulate the maximum       |       |    |
|   | displacement of the cantilever for at least three different values of   |       |    |
|   | point contact load, verify one of the readings with given analytical    |       |    |
|   | expression of maximum displacement of the cantilever.                   |       |    |
| 6 | Aim: To model and analyze Piezoresitive Pressure Sensor in MEMS         | 1,2,4 | 05 |
|   | Design and Simulation FEM Tool (CoventorWare).                          |       |    |
|   | Problem Statement:                                                      |       |    |
|   | a) Choose the proper substrate; define the process flow and Layout of   |       |    |
|   | Piezoresitive pressure sensor in MEMS Design and Simulation FEM         |       |    |
|   | Tool (CoventorWare) and create a its 3 D Layout.                        |       |    |
|   | b) Observe the change in resistance of piezoresistance for given input  |       |    |
|   | pressure. Compare this reading with the given analytical expression of  |       |    |
|   | the change in resistance of the piezoresistace.                         |       |    |
| 7 | Aim: To evaluate the performance of the fabricated MEMS micro-          | 1,2,4 | 05 |
|   | heater.                                                                 |       |    |
|   | Problem Statement: For the given fabricated MEMS micro-heater,          |       |    |



## **Sardar Patel Institute of Technology**

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

| Total Marks |                                                                            |       |    |  |
|-------------|----------------------------------------------------------------------------|-------|----|--|
|             | deflection of the Hot Arm actuator.                                        |       |    |  |
|             | b) Observe and draw the effect of change in width of flexures on the       |       |    |  |
|             | actuator.                                                                  |       |    |  |
|             | Hot Arm actuator before and after the deflection of the Hot Arm            |       |    |  |
|             | c) Observe the spatial variation of electric potential, temperature of the |       |    |  |
|             | mask layout and draw the final structure.                                  |       |    |  |
|             | a) Describe the complete process flow, schematic representation of the     |       |    |  |
|             | COMSOL Multiphysiscs,                                                      |       |    |  |
|             | <b>Problem Statement:</b> For the given model of Hot Arm actuator in       |       |    |  |
|             |                                                                            |       |    |  |
| Ū           | Multiphysics                                                               | 1,2,1 | 02 |  |
| 8           | <b>Aim:</b> To model and analyze the Hot Arm actuator in COMSOL            | 1.2.4 | 05 |  |
|             | test voltages like square, Ramp, and sinusoidal.                           |       |    |  |
|             | b) To plot the temperature response of heated membrane to standard         |       |    |  |
|             | excitation voltage and compare it with the given analytical expression.    |       |    |  |
|             | a) To measure the temperature of the heated membrane for the input         |       |    |  |

## **References:**

[1] Practical MEMS - by Ville Kaajakari; Publisher: Small Gear Publishing

- [2] Microsystem Design by S. Senturia; Publisher: Springer
- [3] <u>www.nanohub.org</u>
- [4] MEMS Technology Laboratory Manual