

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
	Robotics			2			1	1
EV.COM1		Examination Scheme						
EXC8041		ISE			ESE			Total
				Prac	ctical (ral	
		4	0	-	-	20		60

Pre-requisite Co	urse Co	les EXC8041 (Robotics)							
After successful completion of the course, student will be able to									
	CO1	Develop inverse and direct kinematics algorithm for robotic arm							
Course		manipulation using suitable platform							
	CO2	Differentiate the performance of motion planning algorithms							
Outcomes	CO3	Develop image processing algorithm for robotic arm manipulation							
	CO4	Operate the robotic arm manipulator and verify its specifications							
	CO5	Perform in a team to execute a given robotic task							

Exp. No.	Experiment Details	Ref.	Marks
1	Generation of PWM Signal for motor control	1	05
2	Digital control algorithm for self-balance ROBOT	1	05
3	Simulation of CTM in MATLAB	2	05
4	Implement Bug 0 Algorithm	2,3	05
5	Implement Bug 2 Algorithm	2,3	05
6	Control Algorithm 6 DOF Robot	1	05
7	Thresholding, Histogram and Edge detection of Digital Image	2	05
8	Position control of DC motor using NI Elvis	1	05
Total Marks			

References:

- [1] LabVIEW & myRIO user manual
- [2] www.mathworks.com
- [3] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.