

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
		4			4			4
ETC701	Image and Video Processing			Exami	ination Scheme			
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes	ETC 405: Signals and Systems			
	ETC 602: Discrete Time Signal Processing			
After successful completion of the course, student will be able to				
	CO1	To cover the fundamentals and mathematical models in		
		digital image and video processing.		
	CO2	2 To develop time and frequency domain techniques for image		
Course Outcomes		enhancement.		
Course Outcomes	CO3	To expose the students to current technologies and issues in		
		image and video processing.		
	CO4	To develop image and video processing applications in		
		practice.		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Image	Fundamentals	1,2	04
	1.1	Image acquisition, sampling and quantization, image resolution,		
		basic relationship between pixels, color images, RGB, HSI and		
		other models		
2	Two D	Dimensional Transforms	3	06
	2.1	Discrete Fourier Transform, Discrete Cosine Transform, KL		
		Transform, and Discrete Wavelet Transform		
3	Image	Enhancement	1,4	08
	3.1	Spatial Domain		
		Point Processing: Digital Negative, contrast stretching,		
		thresholding, gray level slicing, bit plane slicing, log transform and		
		power law transform.		
		Neighborhood Processing: Averaging filters, order statistics filters,		
		high pass filters and high boost filters		
	3.2	Frequency Domain: DFT for filtering, Ideal, Gaussian and		
		Butterworth filters for smoothening and sharpening, and		
		Homomorphic filters		
	3.3	Histogram Modeling: Histogram equalization and histogram		
		specification.		
4	Image	Segmentation and Morphology	2,3	07
	4.1	Point, line and edge detection, edge linking using Hough transform		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		and graph theoretic approach, thresholding, and region based segmentation.		
	4.2	Dilation, erosion, opening, closing, hit or miss transform, thinning and thickening, and boundary extraction on binary images		
5	Image	1,2,3	07	
	5.1	Degradation model, noise models, estimation of degradation		
		function by modeling, restoration using Weiner filters and Inverse filters .		
6	Video Formation, Perception and Representation			
	6.1	Digital Video Sampling, Video Frame classifications, I, P and B frames, Notation, ITU-RBT 601Digital Video formats, Digital video quality measure.		
	6.2	Video Capture and display: Principle of colour video camera, video camera, digital video		
	6.3	Sampling of video Signals: Required sampling rates, sampling in		
		two dimensions and three dimensions, progressive virus interlaced scans.		
7	Two I	Dimensional Motion Estimation	2,3	12
	7.1	Optical Flow: 2-D motion Vs optical flow, optical flow equations, motion representation, motion estimation criteria, optimization method.		
	7.2	Pixel based motion estimation: Regularization using motion smoothing constraints, using multipoint neighborhood.		
	7.3	Block Matching Algorithms: Exhaustive block matching algorithms, phase correlation method, Binary feature matching.		
	7.4	Multi resolution Motion Estimation: General formulation, Hierarchical blocks matching Algorithms.		
			Total	52

References:

1. Gonzales and Woods, *—Digital Image Processing* || , Pearson Education, India, Third Edition,

2. Anil K.Jain, —Fundamentals of Image Processing ||, Prentice Hall of India, First Edition, 1989.

3. Murat Tekalp, *—Digital Video Processing* || , Pearson, 2010.

4. John W. Woods, *—Multidimensional Signal, Image and Video Processing* || , Academic Press 2012

5. J.R.Ohm, *—Multimedia Communication Technology*", Springer Publication.

6. A.I.Bovik, -Handbook on Image and Video Processing", Academic Press.