

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
ETC703	Optical Communication and Networks	4			4			4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes	ETC4	ETC404 Wave Theory and Propagation		
-	ETC502 Analog Communication			
	ETC601 Digital Communication.			
After successful completion of the course, student will be able to				
	CO1	Apply fundamental principles of optics and light waves to		
		design optical fiber communication systems.		
	CO2	Identify structures, functions materials and working		
		principles of optical fibers, light sources, couplers, detectors		
		and multiplexers.		
Course Outcomes	CO3	Design optical fiber communication links using appropriate		
Course Outcomes		optical fiber, lights sources, couplers, detectors and		
		multiplexers.		
	CO4	Explore concept of designing and operating principles of		
		modern optical communications systems and networks.		
	CO5	Apply the knowledge developed in class to contemporary		
		optical fiber communication research and industrial areas.		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Optical Fiber Communication Technology		1,2	10
	1.1	Block diagram, advantages, loss and bandwidth window, ray theory		
		transmission, total internal reflection, acceptance angle, numerical		
		aperture, and skew rays		
	1.2	EM waves, modes in planer guide, phase and group velocities,		
		types of fibers according to refractive index profile and mode		
		transmission.		
	1.3	Fiber material, fiber cables and fiber fabrication, fiber joints, fiber		
		connectors, splices.		
2	Trans	mission Characteristic of Optical Fiber	1,2	08
	2.1	Attenuation, absorption, linear and nonlinear scattering losses,		
		bending losses, modal dispersion, waveguide dispersion, dispersion		
		and pulse broadening, dispersion shifted and dispersion flattened		
		fibers, and non linear effects		
	2.2	Measurements of attenuation, dispersion and OTDR		
3	Optica	al Communication Systems	1,2,3	08

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	21	Working principle and characteristics of sources (LED I ASEP)		
	3.1	working principle and characteristics of sources (LED, LASER),		
		and optical amplifiers		
	3.2	Working principle and characteristics of detectors (PIN, APD),		
		noise analysis in detectors, coherent and non-coherent detection,		
		receiver structure, bit error rate of optical receivers, and receiver		
		performance.		
	3.3	Point to point links system considerations, link power budget, and		
		rise time budget		
4	Optica	al Network System Components and Optical Networks	1,4,5	10
	4.1	Couplers, isolators, circulators, multiplexers, filters, fiber gratings,		
		Fabry Perot filters, arrayed waveguide grating, switches and		
		wavelength converters		
	4.2	SONET and SDH standards, architecture of optical transport		
		networks (OTNs), network topologies, protection schemes in		
		SONET/SDH, and wavelength routed architectures.		
	4.3	Operational principle of WDM, WDM network elements and		
		Architectures, Introduction to DWDM, Solitons.		
5	Packe	t Switching and Access Networks	5	08
	5.1	OTDM, multiplexing and de-multiplexing, synchronization and		
		broadcast OTDM networks.		
	5.2	Network architecture overview, OTDN networks, optical access		
		networks, and future access networks.		
6	Netwo	work Design and Management		08
	6.1	Transmission system model, power penalty-transmitter, receiver		
		optical amplifiers, crosstalk, dispersion, wavelength stabilization.		
	6.2	Network management functions, configuration management,		
		performance management, fault management, optical safety, and		
		service interface		
			Total	52

References:

1. John M. Senior, — Optical Fiber Communication $\|$, Prentice Hall of India Publication, Chicago, 3_{rd} Edition, 2013

2. Gred Keiser, —*Optical Fiber Communication* || , Mc-Graw Hill Publication , Singapore, 4th Edition, 2012

3. G Agrwal, —*Fiber optic communication Systems* || , John Wiley and Sons, 3rd Edition, New York 2014

4. Rajiv Ramaswami and Kumar N. Sivarajan, *—Optical Networks: A Practical Perespective* ||, Elsevier Publication Elsevier India Pvt.ltd, 3rd Edition, 2010

5. P.E.Green, — Optical Networks || , Prentice Hall, 1994

6. Biswanath Mukherjee, — Optical Communication Networks || , McGraw-Hill, 1997.