

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ITC802	Big Data Analytics	4	-	-	4	-	-	4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite Course Codes		
After successful completion of the course, student will be able to:		
	CO1	Analyze the key issues in big data management and its
		associated applications in intelligent business and scientific
		computing
	CO2	Experiment with fundamental enabling techniques and
		scalable algorithms like Hadoop, Map Reduce and NO SQL
Course Outcomes		in big data analytics
	CO3	Interpret business models and scientific computing
		paradigms
	CO4	Apply software tools for big data analytics
	CO5	Apply big data analytics in various applications like
		recommender systems, social media applications etc

Module	Topics	Ref.	Hrs.
No.			
1	Introduction to Big data	1	03
	Introduction to Big Data, Big Data characteristics, types of Big Data,		
	Traditional vs. Big Data business approach, Case Study of Big Data		
	Solutions.		
2	Introduction to Hadoop	1,2	02
	What is Hadoop? Core Hadoop Components; Hadoop Ecosystem;		
	PhysicalArchitecture; Hadoop limitations.		
3	NoSQL	3	04
	1. What is NoSQL? NoSQL business drivers ;NoSQL		
	case studies;		
	2. NoSQL data architecture patterns: Key-value stores, Graph		
	stores, Column family(Big table)stores, Document stores,		
	Variations of NoSQL architectural patterns;		
	Using No SQL to manage big data: What is a big data NoSQL		
	solution? Understanding the types of big data problems; Analyzing		

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

	big data with a shared-nothing architecture; Choosing distribution		
	models: master-slave versus peer-to-peer; Four ways that NoSQL		
	systems handle big data problems.		
4	Map Reduce and the New Software Stack	1,4	06
	Distributed File Systems :		
	Physical Organization of Compute Nodes, Large-Scale File-		
	System Organization. Map Reduce: The Map Tasks, Grouping		
	by Key, The Reduce Tasks, Combiners, Details of Map Reduce		
	Execution, Coping With Node Failures.		
	Algorithms Using Map Reduce:		
	Matrix-Vector Multiplication by Map Reduce ,Relational-		
	Algebra Operations, Computing Selections by Map Reduce,		
	Computing Projections by Map Reduce, Union, Intersection, and		
	Difference by Map Reduce, Computing Natural Join by Map		
	Reduce, Grouping and Aggregation by Map Reduce, Matrix		
	Multiplication, Matrix Multiplication with One Map reduce step.		
5	Finding Similar Items	1,5	03
	Applications of Near-Neighbor Search, Jaccard Similarity of Sets,		
	Similarity of Documents, Collaborative Filter in gasa Similar-Sets		
	Distance Measures : Definition of a Distance Measure Fuelidean		
	Distance, Jaccard Distance, Cosine Distance, Edit Distance,		
	Hamming Distance.		
6	Mining Data Streams	5,6	
	The Stream Data Model: A Data-Stream-Management System,		
	Examples of Stream Sources, Stream Querie, Issues in Stream		
	Processing.		
	Sampling Data in a Stream: Obtaining a Representative		
	Sample, The General Sampling Problem, Varying the		
	Sample Size.		
	Filtering Streams:		
	The Bloom Filter, Analysis.		
	Counting Distinct Elements in a Stream		
	The Count-Distinct Problem, The Flajolet-Martin Algorithm,		
	Combining Estimates, Space Requirements		
	Counting One sin a Window:		
	The Cost of Exact Counts, The Datar-Gionis-Indyk-		
7	Link Analysis	5,6,7	05
	Page Rank Definition, Structure of the web, dead ends, Using		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Page rank in a search engine, Efficient computation of Page					
	Rank: Page Rank Iteration Using Map Reduce, Use of					
	Combiners to Consolidate the Result Vector.					
	Topic sensitive Page Rank, link Spam, Hubs and Authorities.					
8	Frequent Item sets	5,6,7	05			
	Handling Larger Data sets in Main Memory Algorithm of					
	Park, Chen and Yu, The Multi stage Algorithm, The					
	Multihash Algorithm.					
	The SON Algorithm and Map Reduce					
	Counting Frequent Items in a Stream					
	Sampling methods for streams, frequent item sets					
	in Decaying window					
9	Clustering	5,6,7	05			
	CURE Algorithm, Stream-Computing, A Stream-Clustering					
	Algorithm, Initializing & Merging Buckets, Answering Queries					
10	Recommendation Systems	6,7	04			
	A Model for RecommendationSystems,Content-					
	BasedRecommendations,Collaborative Filtering					
11	Mining Social- Network Graphs	6,7	05			
	Social Networks as Graphs, Clustering of Social-Network Graphs,					
	Direct Discovery of Communities, SimRank, Counting triangles					
	Total hours of instructions		48			

References:

- 1. Anand Raja Raman and Jeff Ullman" *Mining of Massive Datasets*", Cambridge University Press,
- 2. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 3. Dan McCreary and Ann Kelly" *Making Sense of No SQL"– A guide for managers and the rest of us*, Manning Press
- 4. Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities In Huge
- 5. Data Streams With Advanced Analytics", Wiley
- 6. Judith Hurwitz, Alan Nugent, Dr. Fern Halper, Marcia Kaufman," Big Data for

Dummies", Wiley India

- 7. Michael Minelli, Michele Chambers, Ambiga Dhiraj, "Big Data Big Analytics: Emerging Business Intelligence And Analytic Trends For Today's Businesses ", Wiley India.
- 8. Paul Zikopoulos, Chris Eaton, "Understanding Big Data: Analytics for Enterprise
- 9. Class Hadoop and Streaming Data', Mc Graw Hill Education.