

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
ITC8044	Robotics	4	-	-	4	-	-	4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60%Weightage)			age)

Pre-requisite Course Codes				
After successful completion of the course, student will be able to:				
	CO1	Describe kinematics and dynamics of stationary and mobile		
		robots.		
	CO2	Describe trajectory planning for rigid robot and mobile		
Course Outcomes		robots.		
	CO3	Implement trajectory generation and path planning		
		algorithms.		
	CO4	Design interdisciplinary projects .		

Module	Topics	Ref.	Hrs.
NO.		1	02
I	Fundamentals	1	03
	Robot Classification, Robot Components, Degrees of freedom,		
	Joints, Coordinates, Coordinate frames, workspace, applications		
2	Kinematics of Robots	1,2	07
	Homogeneous transformation matrices, Inverse transformation		
	matrices, Forward and inverse kinematic equations position		
	and orientation, Denavit-Haten berg representation of forward		
	kinematics, Inverse kinematic solutions, Case studies		
3	Differential motions and velocities	2,3	06
	Differential relationship, Jacobian, Differential motion of a frame		
	and robot, Inverse Jacobian.		
4	Dynamic Analysis of Forces	3	07
	Lagrangian mechanics, Moments of Inertia, Dynamic equations of		
	robots. Transformation of forces and moment between coordinate		
	frames.		
5	Trajectory Planning	3	07
	Trajectory planning, Joint-space trajectory planning, Cartesian-space		
	trajectories.		
6	Mobile Robot Motion Planning	3	04

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent		
	Bug.		
7	Potential Functions and Visibility Graphs	2,3	
	Attractive/Repulsive potential, Gradient descent, wave-front		
	planner, navigation potential functions, Visibility map, Generalized		
	Voronoi diagrams and graphs, Silhouette methods		
8	Coverage Planning	2,3	06
	Cell Decomposition, Localization and Mapping		
	Total hours of instructions		48

References:

- 1. Saeed Benjamin Niku, "Introduction to Robotics-Analysis, Control, Applications", ., Second Edition, 2011, Wiley India Pvt. Ltd.
- 2. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard,
- 3. Lydia E. Kavrakiand Sebastian Thrun, "Principles of Robot Motion-Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.
- 4. Mark W. Spong &M. Vidyasagar, "*Robot Dynamics &Control*", 2nd edition 2004, Wiley India Pvt.Ltd.
- 5. JohnJ.Craig, "Introduction to Robotics-Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 6. Aaron Martinez & Enrique Fernandez," *Learning ROS for Robotics Programming*", ,First Edition, 2013,Shroff Publishers.