

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ES11		3	-		3			3
	Basic Electrical and Electronics Engineering	Examination Scheme						
		ISE		MSE		ESE		
		10	10 30		80	100 (60% Weightage)		

Pre-requisite Course Codes		Codes				
	CO1	Compute various electrical quantities of given dc circuit using circuit				
		simplification techniques and various network theorems.				
Course	CO2	Describe the concept of ac circuit and its resonance phenomena for a given				
Outcomes		RL, RC and RLC circuit.				
	C03	Compare Diode, BJT, FET on the basis of their operation and applications.				
	CO4	Implement applications using OPAMP and timer circuit.				

Module No.	Unit	Topics		Hrs.
	No.			
Prerequisite	Α	Concept of e.m.f, potential difference, current, ohm's law,		02
		resistance, resistivity, series and parallel connections, power		
		dissipation in resistance, effect of temperature on resistance		
	В	Capacitors, with uniform and composite medium, energy stored in		
		capacitor, R-C time constant.		
	С	Magnetic field, Faraday's laws of Electromagnetic induction,		
		Hysterics and eddy current losses, energy stored in an inductor,		
		time constant in R-L circuit	l	
1		DC circuit		
	1.1	Kirchhoff 's laws, Ideal and practical voltage and current source,	1,2	03
		Source transformation, Star-delta transformation		
	1.2	Superposition theorem, Thevenin's theorem, Norton's theorem,	1,2	03
		Maximum power transfer theorem		
2		AC circuit		
	2.1	Generation of alternating voltage and currents, RMS and Average	2,3	03
		value, form factor, crest factor, AC through resistance, inductance		
		and capacitance		
	2.2	R-L, R-C and R-L-C series and parallel circuits, power and power	2,3	04
		factor		
	2.3	Series and parallel resonance, Q-factor and bandwidth	2,3	03

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3		Diode, BJT and applications			
	3.1	Half wave, Full wave and Bridge rectifier circuit, Filter circuit,	4	03	
		Zener as a regulator, Clipper and clamper circuit using diode			
	3.2	BJT operation, CE, CB and CC configuration of BJT, BJT as a	4	03	
		switch, BJT as a current amplifier and voltage amplifier, Testing of			
		BJT using digital multimeter,			
4		FET operation and applications			
	4.1	FET operation, Configuration of FET, Common source FET	4	03	
		amplifier, Comparison between BJT and FET, advantages of			
		negative feedback in CE and CS amplifier,			
	4.2	Barkhausen stability criterion in oscillator, RC phase shift	4	03	
		oscillator, Hartley and colpitts oscillator, Crystal oscillator			
5		Operational amplifier			
	5.1	Operational amplifier, block diagram representation, IDEAL opamp	5	02	
		characteristics, open loop configuration			
	5.2	Opamp applications: Opamp as an inverting and noninverting	5	03	
		amplifier, opamp as a adder, subtractor, precision rectifier,			
	5.3	Introduction of IC555 timer, Internal block diagram of IC555,	5	03	
		Astable, monostable and bistable mode using IC555			
			Total	39	

References:

- [1] B.L.Theraja "Electrical Technology" Vol-I and II, S. Chand Publications, 23rd ed. 2003.
- [2] Joseph A Edminister, "Schaum's ouline of theory and problems of electric circuits" Tata

McGraw Hill, 2nd edition

- [3] S.Sivanagaraju, G. Kishor, C. Srinivasa Rao, "Electrical Circuit Analysis" CENGAGE Learning
- [4] David Bell, "Electronic Devices and Circuits" Fifth Edition, Oxford University Press
- [5] Ramakant A. Gayakwad, "OPAMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Education, 2001.