

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
ES12/ES22	Engineering Mechanics	3	1		3	1		4
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Course Outcomes:

ES12/ES22	
Engineering	
Mechanics	Learners will be able to
CO1	Determine resultant of coplanar force system or equivalent force system (force & couple)
CO2	Construct the Free Body Diagram of real world problems and apply the conditions of equilibrium to determine the reactive forces for a given coplanar force system
CO3	Analyse the equilibrium of rigid bodies subjected to dry friction by using the laws of friction
CO4	Determine vectorically the resultant force and the reactive force for a 3- Dimensional force system
CO5	Determine the position, velocity and acceleration in different frames of reference for motion of a particle and plot the motion curves for rectilinear motion. Also Locate the Instantaneous Center of Rotation & determine the angular velocity for rigid bodies
CO6	Determine velocities of particle after collision

Module No.	Unit No.	Topics		Hrs.
1 System of Coplanar Forces	1.1	Resultant of Concurrent forces, Parallel forces, Non- Concurrent Non-Parallel system of forces, Moment of force about a point, Couples, Varignon's Theorem. Distributed Forces in a plane.	1, 3	7
2 Equilibrium of System of	2.1	Condition of equilibrium for concurrent forces, parallel forces and Non-concurrent Non-Parallel or general force system and Couples. Equilibrium of connected bodies.	1, 3	4
Coplanar Forces	2.2	Types of supports , loads, Beams, Determination of reactions at supports for various types of loads on beams.	2,3	3
3 Friction	3.1	Introduction to Laws of friction, Cone of friction, Equilibrium of bodies on inclined plane, Application to problems involving wedges, ladders.	1, 3	5
4	4.1	Rectangular Components of Forces in Space, Resultant of	1, 2	5

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Forces in		Space forces, Moment of a Force about a point, axis and		
space		line. Equilibrium of a particle in space.		
5 Kinematics	5.1	Kinematics of ParticleMotion along straight and curved path, Rectangularcomponent of velocity and acceleration, Tangential &Normal component of acceleration, Motion curves(a-t, v-t,		7
		s-t curves), Projectile motion,		
	5.2	Kinematics of Rigid Bodies Instantaneous center of rotation for the velocity, velocity diagrams for bodies in plane motion, (up to 2 linkage mechanism)	1, 2	4
6		Impulse and Momentum:-Principle of Linear Impulse and		
Kinetics of	6.1	Momentum. Law of Conservation of momentum. Impact	1, 2	4
Particles		and collision.		
				39
				hrs

Recommended Books:

- 1. F.P. Beer, E.R. Johnston Jr., *Vector Mechanics for Engineers Statics and Dynamics*, 9th ed., NY, USA, McGraw-Hill, 2010.
- 2. E.W. Nelson, C.L. Best, W.G. McLean, *Engineering Mechanic: Statics and Dynamics*, 5th ed., NY, USA, Schaum's Outline Series, McGraw-Hill, 1998.
- 3. A.K. Tayal, *Engineering Mechanics: Statics and Dynamics*, 13th ed., Delhi, Umesh Publications, 2005.