Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
BS11	Engineering Mathematics-I	4	1	--	4	1	--	5
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60\% Weightage)			

Course Objectives: To develop mathematical skills for solving engineering problems.

Pre-requisite Course Codes			HSC level Mathematics
After successful completion of the course, student will be able to			
Course Outcomes	CO1	To find powers, roots and logarithm of a complex number and separate function of a complex number into real and imaginary parts	
	CO2	To find nth order derivative of a function and product of functions	
	CO3	To expand the given function as power series	
	CO4	To differentiate a function partially and apply it to extremise functions	
	CO5	To find rank of a matrix and solve system of linear equations and its applications	
	CO6	To solve system of linear equations by Numerical Methods and to encode and decode messages	

Module No	Module name	Unit No.	Topics	Ref	Hrs.
1	Complex Numbers		Revision: Complex Numbers as ordered pairs, Argand's diagram, Cartesian, Polar and Exponential form of Complex Numbers.		01
		1.1	De'moivre's Theorem and its application to determine powers of complex numbers. Roots of complex numbers by De'moivre's Theorem	$\begin{gathered} 1,2,3 \\ 5 \end{gathered}$	03
		1.2	Expansion of $\sin n \theta$ and $\cos n \theta$ in terms of powers of $\sin \theta$ and $\cos \theta$. Expansion of $\sin ^{n} \theta$ and $\cos ^{n} \theta$ in terms of sines and cosines		02
		1.3	Hyperbolic Function: Circular function and relation between circular and hyperbolic function, Inverse hyperbolic functions. Separation into real and imaginary parts of complex functions.		05
		1.4	Logarithm of complex numbers.	$\begin{gathered} 1,2,3, \\ 5 \end{gathered}$	02
2	Differential Calculus	2.1	Successive Differentiation: nth derivative of standard functions.	$\begin{gathered} 1,2,3, \\ 5 \end{gathered}$	02

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

References:

[1] Kreyszig, "Advanced Engineering Mathematics", $9^{\text {th }}$ edition, John Wiley
[2] H.K.Dass," Advanced Engineering Mathematics", $28^{\text {th }}$ edition,S.Chand, 2010
[3] Grewal B.S., "Higher Engineering Mathematics", $38^{\text {th }}$ edition, Khanna Publication
[4] H Anton and CRorres,"Elementary Linear Algebra Application Version", 6th edition, John Wiley\& Sons, 2010
[5] Jain and Iyengar, "Advanced Engineering Mathematics", $4^{\text {th }}$ edition, Narosa Publishing House, Pvt. Ltd, 2014
[6] S.S. Sastry, "Introductory Methods of Numerical Analysis", 4 th edition, Prentice-Hall of India Pvt.Ltd.
[7] M. Eisenberg, "Hill Cipher and Modular Linear Algebra", 3 Nov 1999

