

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned							
	Applied Physics II	L	Т	Р	L	Т	Р	Total	
		3	-	-	3	-	-	3	
BS22		Examination Scheme							
		ISE			MSE		ESE		
		10 30				100 (60% weightage)			

COURSE OBJECTIVE:

To make learners aware about the role and relevance of physics in engineering and technology.

Pre-requisite Course Codes			HSC level physics						
After successful completion of the course, student will be able to									
Course Outcomes	C01	Comprehend the interference in thin films and Fraunhofer diffraction							
	C02	Illustrate the principle, construction and working of various lasers and its applications							
	C03	Explain the basics of fibre optics and its applications in optical fibre technology							
	C04	Demonstrate the basic knowledge of quantum mechanics							
	C05	Derive Maxwell's equations using the concepts of electrodynamics							
	C06	Comprehend the applications	significance of nanoscience and nanotechnology and its						

Module No.	Module Name	Unit no.	Topics	Ref.	Hrs.
1	Interferen ce and Diffractio n	1.1	Interference by division of amplitude and division of wavefront; Thin film interference - interference in thin films of constant thickness due to reflected and transmitted light, origin of colours in thin films, interference in thin films of non-constant thickness (wedge-shaped) due to reflected light, formation of Newton's rings Applications of interference – testing of surface flatness, determination of thickness of thin wire, refractive index of a liquid, wavelength of incident light, radius of curvature of a lens; Anti-reflection coating, Highly reflecting films		07
		1.2	Fraunhofer diffraction at a single slit, Fraunhofer diffraction at a double slit, Fraunhofer diffraction due to N slits; Diffraction grating - Plane transmission grating	2,3,4	04
		1.3	Rayleigh's criterion, resolving power of a diffraction	2,3,4	02

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

			grating, dispersive power of a diffraction grating; determination of wavelength of light using a plane transmission grating		
2	LASER	2.1	Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity	2,4	03
		2.2	Solid state laser – Ruby and Nd:YAG laser, Gas laser – Helium Neon laser, semiconductor laser; Applications of laser in industry, medicine and holography. (construction & reconstruction of holograms)	2,4	03
3	Fibre Optics	3.1	Total internal reflection, critical angle; optical fibre – construction and types; Numerical aperture, cone of acceptance; V-number, number of modes of propagation	2,4	03
		3.2	Losses in optical fibre – attenuation and dispersion; Applications – optical fibre communication link, optical fibre sensors, medical applications	2,4	01
4	Quantum Mechanics	4.1	Introduction to quantum mechanics, Wave particle duality, de Broglie wavelength; experimental verification of de Broglie theory; wave packet, group velocity and phase velocity; Wave function, Physical interpretation of wave function; Heisenberg's uncertainty principle; Electron diffraction experiment; Applications of uncertainty principle	1,2	04
		4.2	Schrodinger's time dependent wave equation, time independent wave equation; Application of time- independent Schrodinger equation - Particle trapped in one dimensional box and Potential barrier	1,2	03
5	Electroma gnetism	5.1	Coulomb's law; divergence and curl of electrostatic field; continuous charge distribution; application of Gauss' law for spherical symmetry	2,5	03
		5.2	Divergence of magnetic induction, Biot-Savart law; Ampere's circuit law; Faraday's law of emf; Maxwell's equations	2,5	04
6	Nanotechn ology	6.0	Introduction to nanotechnology; important tools in nanotechnology – SEM, TEM, AFM; Applications of nanomaterials	2	02
				Total	39

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

References:

- [1] Beiser Arthur, "Concepts of Modern Physics", 6th ed, McGraw Hill Education, 2009.
- [2] Bhattacharya D K and Tandon, "Engineering Physics", 1st ed, New Delhi, Oxford Press, 2015.
- [3] Halliday and Resnick, "Fundamentals of Physics", 10th ed, Wiley, 2013.
- [4] Ghatak A, "Optics", 5th ed, McGraw Hill Education, 2012.
- [5] Griffiths D, "Introduction to Electrodynamics", 4th ed, Pearson Education, 2015.