

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
ES21	Basic Electrical Technology	3	-		3			3	
		Examination Scheme							
		ISE		MSE		ESE			
		10		30		100 (60% Weightage)			

Pre-requisite	Course	e Codes			
Course Outcomes	CO1	Compute various electrical quantities of given dc circuit using circuit			
		simplification techniques and various network theorems.			
	CO2	Describe the concept of ac circuit and its resonance phenomena for a given			
		RL, RC and RLC circuit.			
	C03	Analyze the series and parallel magnetic circuit.			
	CO4	Describe characteristics of single phase, three phase ac circuits and			
		transformer equivalent circuit theoretically and graphically			
	CO5	Describe the constructional details and working principle of given AC and			
		DC machines			

Module No.	Unit	Topics		Hrs.
	No.			
Prerequisite	A	Concept of e.m.f, potential difference, current, ohm's law,		02
		resistance, resistivity, series and parallel connections, power		
		dissipation in resistance, effect of temperature on resistance		
	В	Capacitors, with uniform and composite medium, energy stored in		
		capacitor, R-C time constant.		
	C	Magnetic field, Faraday's laws of Electromagnetic induction,		
		Hysterics and eddy current losses, energy stored in an inductor,		
		time constant in R-L circuit		
1	1.1	Kirchhoff 's laws, Ideal and practical voltage and current source,	1,2	04
		Source transformation, Star-delta transformation		
	1.2	Mesh and Nodal analysis, super node and super mesh	1,2	02
	1.3	Superposition theorem, Thevenin's theorem, Norton's theorem,		06
		Maximum power transfer theorem		
2	2.1	Basic definitions to understand concepts in magnetic circuit, ohm's	3	03
		law in in a magnetic circuit, parallel magnetic circuit, coefficient of		
		coupling, dot convention,		
	2.2	Electrically joined coupled coils: Series adding, Series opposing,	3	02
		parallel adding, parallel opposing, comparison between magnetic		
		and electrical circuit		
3	3.1	Generation of alternating voltage and currents, RMS and Average	1,2	03

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		shaded pole motor.	Total	42
	5.4	Single phase induction motor: Construction, working principle, double field revolving theory, split phase, capacitor start and	1,4	02
	5.3	Three phase induction motor: Construction, working principle, applications, equivalent circuit of three phase induction motor	1,4	03
	5.2	DC machine: Construction, working principle, emf equation, Characteristic, applications	1,4	02
5	5.1	Single phase transformer: Construction, working principle, EMF equation, Phasor diagram with resistive, inductive and capacitive load	1,4	03
	4.2	Power in three phase circuit, two wattmeter method	1	02
4	4.1	Three phase voltage and current generation, Star and delta connections, relationship between phase and line currents and voltages	1	01
	3.3	Series and parallel resonance, Q-factor and bandwidth	1,2	04
	3.2	R-L , R-C and R-L-C series and parallel circuits, power and power factor	1,2	03
		value, form factor , crest factor, AC through resistance, inductance and capacitance		

References:

- [1] B.L.Theraja "Electrical Technology" Vol-I and II, S. Chand Publications, 23rd ed. 2003.
- [2] Joseph A Edminister, "Schaum's ouline of theory and problems of electric circuits" Tata McGraw Hill, 2nd edition
- [3] S.Sivanagaraju, G. Kishor, C. Srinivasa Rao, "Electrical Circuit Analysis" CENGAGE Learning
- [4] D P Kothari and I J Nagrath "Electrical Machines", McGraw Hill, Fourth edition