

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
BS21		4	1		4	1		5
	Engineering Mathematics-II	Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			tage)

Course Objectives: To develop mathematical skills for solving engineering problems.

Pre-requisite Course Codes		odes HSC level Mathematics			
After successful completion of the course, student will be able to					
Course Outcomes	CO1	To solve differential equations of first order			
	CO2	To solve differential equations of higher order using operators			
	CO3	To apply techniques of solving Differential Equations of first order to			
		electrical engineering problems			
	CO4	To apply techniques of Numerical Integration, Beta & Gamma and			
		Differentiation under integral sign to evaluate integrals			
	CO5	To evaluate integrals in various co-ordinate system			
	CO6	To calculate Area, Mass of Lamina and volume of regions			

Module No	Module name	Unit No.	Topics		Hrs.
1	Linear Differential Equations	1.1	Exact differential Equations, Equations reducible to exact form by using integrating factors.		03
		1.2	Linear differential equations (Review), equation reducible to linear form, Bernoulli's equation.	1,2,3, 6,7	03
		1.3	Simple application of differential equation of first order and first degree to electrical engineering problem		02
	(First order)		Numerical solution of ordinary differential equations of first order and first degree using (a)Taylor's series method (b)Euler's method (c) Modified Euler method (d) Runga-Kutta fourth order formula.	1,2,3, 6	04
2	Linear Differential Equations	2.1	Linear Differential Equation with constant coefficient- complementary function, particular integrals of differential equation of the type	1,2,3, 6,7	08

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	(Higher		$f(D)y = X$ where X is e^{ax} , $sin(ax+b)$,		
	order) 2.2		$\cos(ax+b)$, $e^{ax}V$, xV.		
			Cauchy's homogeneous linear differential		
			equation and Legendre's differential equation,		03
			Method of variation of parameters.		
3	Integration 3.1 (One 3.2		Beta and Gamma functions and its properties.	122	05
			Differentiation under integral sign with	1,2,3, 6	02
	Multiple Integrals & Applications	41	Tracing of curves and standard solids		02
4		4.2	Double integration-definition Evaluation of		02
			Double Integrals		03
		4.3	Change the order of integration Evaluation of	1,2,3, 5,6	
			double integrals by changing the order of		05
			integration and changing to polar form.		00
		4.4	Triple integration definition and evaluation		04
			(Cartesian, cylindrical and spherical polar		
			coordinates).		
		4.5	Application of double integrals to compute		
			Area, Mass and Volume. Application of triple		04
			integral to compute volume.		
5	Numerical Methods	5.1	Numerical Integration by Trapezoidal,	1,2,3,	
			Simpson's $1/3^{rd}$ and $3/8^{th}$ rule and its	4,6,8	04
	Methous		applications to study motion of a moving body.		
				Total	52

NOTE: ISE component will be evaluated through assignments conducted in the tutorial sessions.

References:

- [1] Kreyszig, "Advanced Engineering Mathematics", 9thedition, John Wiley
- [2] H.K.Dass," Advanced Engineering Mathematics", 28thedition, S.Chand, 2010
- [3] Grewal B.S., "Higher Engineering Mathematics", 38thedition, Khanna Publication
- [4] S.C. Chapra and R.P. Canale, "Numerical Methods for Engineers with Programming and
- [5] Software Applications", McGrawHill, Newyork 1998
- [6] Thomas & Finney, "Calculus & Analytic Geometry", 9thedition, Addison Wesley.
- [7] Jain and Iyengar, "Advanced Engineering Mathematics", 4th edition, Narosa Publishing House, Pvt Ltd, 2014
- [8] Dennis G. Zill, "A First Course in Differential Equations with Modelling Applications, Cengage Learning
- [9] S.S. Sastry, "Introductory Methods of Numerical Analysis", 4th edition, Prentice-Hall of India Pvt. Ltd.