Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Τ	P	L	Т	P	Total
MCA 33	Operations Research	3	1		3	1		4
		Examination Scheme						
		ISE		MSE	ESE 100 (60% Weightage)			
		10		30				

Pre-requisite Course	Basic knowledge of Mathematics and Statistics		
Codes			
	CO1	Apply Operations research methodology to a broad range of problems in business and industry.	
Course Outcomes	CO2	Use mathematics and mathematical modelling using computers to forecast the implications of various choices.	
	CO3	Solve optimization problems.	
	CO4	Think of new methods for solving optimization problems.	

Module	Unit	Topics	Ref.	Hrs.
NO.	NO.		1.0	1
1		Nature of Operation Research	1,2	1
	1.1	History Nature of Operation Research Impact of		
		Operation Research, Application Areas		
2		Overview of Modeling Approach	1,2	2
	2.1	Formulating the problem, Constructing a mathematical		
		model, Deriving a solution, Testing a model and the		
		solution		
	2.2	Establishing control over the solution, Implementation		
		issues		
3		Linear Programming	3,4,5	13
	3.1	Introduction , Graphical solution, Graphical sensitivity		
		analysis		
	3.2	The standard form of linear programming problems,		
		Basic feasible solutions,		
	3.3	Simplex algorithm, Artificial variables		
	3.4	Big M and two phase method		
	3.5	Solution to Problems based on Degeneracy, Alternative		
		optima, Unbounded solution, Infeasible solutions		
4		Dual Problem	6,7	5
	4.1	Relation between primal and dual problems		
	4.2	Dual simplex method, Sensitivity analysis		
5		Transportation Problem	3,6,7	6
	5.1	Starting solutions. North-west corner Rule – least cost		
		methods		
	5.2	Vogel's approximation method, MODI Method		
	5.3	Minimization and Maximization problem		
6		Assignment Problem & Travelling Salesman Problem	4,8,10	5

	5.1	Assignment Problem: Hungarian method (Minimization and		
		Maximization)		
	5.2	Traveling Salesman Problem: Branch & Bound		
		technique		
	5.3	Hungarian method		
7		Sequencing Problem	4,7,9	3
	5.1	Two machines n jobs		
	5.2	Three machines n jobs		
	5.3	N machines m jobs		
8		Replacement Theory		4
	5.1	Replacement of items that deteriorate		
	5.2	Replacement of items that fail group replacement and		
		individual replacement		
8		Game Theory	9	3
	5.1	Two person Zero sum games		
	5.2	Solving simple games.		
			Total	42

References:

- [1] Taha H. A., "Operation Research-An Introduction", McMillan Publishing Company, NY
- [2] Hillier F., and Lieberman G.J, Holden Day, "Introduction to Operation Research"
- [3] P. K. Gupta & Hira, S. Chand, "Operations Research"
- [4] Waynel L. Winston Thomson, "Operations Research Applications and Algorithms"
- [5] Kambo, N.S., "Mathematical Programming Techniques", McGraw Hill
- [6] Ravindran, "Operations Research- Principles and Practice", Wiley Production
- [7] L E Prasad, "Operations Research", Cengage Learning
- [8] K.V. Mital& Mohan New Age, "Optimization Methods"
- [9] KantiSwaroop, Gupta P.K. Man Mohan, Sultan Chand and Sons, "Operations Research"
- [10] S.D. Sharma, "Operation Research"
- [11] H.M Wagher, "Principles of Operation Research (with applications to managerial decisions)", PHI, New Delhi