Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
MCAL36	Unified Modelling Language Lab			2			1	1
		Examination Scheme						
		Term	erm Work Practical		tical	Oral		Total
		4	0	10		10		60

Pre-requisite Course Codes	MCA	11
	CO1	Illustrate the use of UML using industrial CASE tool
	CO2	Model of the Problem Space to construct Behavioral
Course Outcomes		diagrams of UML
	CO3	Construct object oriented diagram to model the design of
		software system.
	CO4	Designing Business Case scenarios with the help of
		Structural Diagrams of using UML

Exp. No.	Experiment Details		Marks
1	Study of UML Overview- The Nature and purpose of Models		5
2	Implementing Use Case -Capturing a System Requirement, Use		5
	Case		
	Relationships, Use Case Overview Diagrams		
3	Implementing Activity Diagram - Essentials, Activities and	1,2	5
	Actions, Decisions and Merges, Doing Multiple Tasks at the		
	Same Time, Time Events, Objects, Sending and Receiving		
	Signals, Starting an Activity, Ending Activities and Flows,		
	Partitions, Managing Complex Activity Diagrams		
4	Implementing Class and Objects- What is a Class, Getting	1,2	5
	Started with Classes in Visibility, Class State: Attributes, Class		
	Behavior: Operations, Static Parts of Your Classes Class		
	Relationships, Constraints, Abstract Classes, Interfaces,		
	Templates, Object Instances, Links, Binding Class Templates		
5	Implementing Sequence Diagram - Participants, Time,	1,2	5
	Events,		
	Signals, and Messages, Activation Bars, Nested Messages,		
	Message Arrows		
6	Implementing Communication Diagram Participants, Links,	1,2	5
	and Messages, Fleshing out an Interaction with a Communication		
	Diagrams ,Communication Diagrams Versus Sequence Diagrams		
	Building a Timing Diagram from a Sequence Diagram, Applying		
	Participants to a Timing Diagram, States, Time, A Participant's		
	State-Line, Events and Messages, Timing Constraints		
7	Implementing Component A Basic Component in UML,	1,2	5

Total Marks			
	When to Use a Deployment Diagram		
	Between Nodes, Deployment Specifications,		
	Execution Environment Nodes, Communication		
	Artifacts, What Is a Node?, Hardware and		
	System, Deployed Software:		
8	Implementing Deployment Diagram Deploying a Simple	1,2	5
	Box Component Views		
	Component, Ports and Internal Structure, Black-Box and White-		
	Components Working Together, Classes That Realize a		
	Provided and Required Interfaces of a Component, Showing		

References:

- [1] Grady Booch, James Rumbaugh, Ivar Jacobson "The Unified Modeling Language User Guide ",Addison Wesley (2005) Second edition
 [2] Kim Hamilton, "Learning UML 2.0", Russell Miles, O'Reilly, second edition.