Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
		3	1		3	1		4
MCA41	Data warehousing and Mining	Examination Scheme						
	& Business Intelligence	ISE	SE MSE ESE					
		10		30	100 (60% Weightage)			ntage)

Pre-requisite Course Codes	DBMS(MCA33), mathematics				
	Stude	nt Will be able to			
	CO1	Understand Data warehouse characteristics with its			
		different models			
	CO2	To design project structure of the data warehouse			
Course Outcomes	CO3	Apply data warehouse concepts for data analysis and			
		report generation			
	CO4	Use conceptualization of BI techniques to make use of			
		relevant theories, concepts and techniques to solve			
		real-world BI problems			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Basic Concepts of Data Warehousing	3	6
	1.1	Introduction, Meaning and characteristics of Data Warehousing,		
	1.2	KDD, Online Transaction Processing (OLTP), Data		
		Warehousing Models.		
	1.3	Data warehouse architecture & Principles of Data Warehousing		
		Data Mining		
2		Data preprocessing	3	6
	2.1	Preprocess the data. Data cleaning Data integration and		
		transformation		
	2.2	Data reduction Dimensionality reduction		
	2.3	Data compression Feature extraction Discretization and concept		
		hierarchy generation		
	2.4	Dimensional Modeling Design		
3		Building a Data Warehouse	3	10
	3.1	Project Structure of the Data warehouse, Data warehousing and		
		Operational Systems, Organizing for building data warehousing,		
	3.2	Important considerations – Tighter integration, Empowerment,		
	3.3	Willingness Business Considerations: Return on Investment		
		Design		
	3.4	Considerations, Technical Consideration, Implementation		
		Consideration, Benefits of Data warehousing.		
4		Business Intelligence-	1,2	6
	4.1	Introduction and overview of BI-Effective and timely decisions,		
	4.2	Data Information and knowledge, BI Architecture, Ethics and		
		BI.		

	4.3	BI Applications- Balanced score card, Fraud detection, Telecommunication Industry, Banking and finance, Market		
		segmentation	2.2	
5		Prediction methods and models for BI	2,3	6
	5.1	Data preparation, Prediction methods-Mathematical method		
	5.2	Distance methods, Logic method		
	5.3	heuristic method-local optimization technique, stochastic hill		
		climber, evaluation of models		
6		BI using Data Warehousing	3,4	8
	6.1	Introduction to DW, DW architecture,		
	6.2	ETL Process, Top-down and bottom-up approaches, characteristics and benefits of data mart,		
	6.3	Difference between OLAP and OLTP. Dimensional analysis- Define cubes. Drill- down and roll- up – slice and dice or rotation,		
	6.4	OLAP models- ROLAP and MOLAP.		
	6.5	Define Schemas- Star, snowflake and fact constellations		
			Total	42

References:

- [1] Carlo Vercellis, "Business Intelligence data mining and optimization for decision making", wiley publication.
- [2] Zbigniew Michlewicz, martin Schmidt, matthew michalewicz, constantin Chiriac, "Adaptive business Intelligence", Springer-Verlag Berlin Heidelberg, First edition
- [3] Ralph Kimball and Margy Ross, "The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling", John Wiley and Sons, 2013, Third Edition
- [4] Chaudhuri and Dayal, "An Overview of Data Warehousing and OLAP Technology", Sections 1-7 (available on Blackboard)