

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	Т	Р	L	Т	Р	Total	
CE911	Advanced Algorithms and	4			4			4	
	Complexity(AAC)			Exami	amination Scheme				
		ISE		MSE	ESE				
		10		30	100 (60% Weightage)			tage)	

Pre-requisite	1	. Data Structures				
_		. Discrete Structures				
		. Introduction to Algorithms				
	4	. Programming Languages				
	A strong understanding of programming and a solid background in discrete mathemat					
	including probability, are necessary prerequisites to this course.					
At the end of s	At the end of successful completion of the course, students will be able to					
	CO1	Analyze worst-case running times of algorithms using asymptotic analysis				
	CO2	Describe the divide-and-conquer paradigm and clarify when an algorithmic design situation calls for it.				
Course Outcomes	CO3	Describe the greedy paradigm and clarify when an algorithmic design situation calls for it				
	CO4	Demonstrate a familiarity with applied algorithmic settings.				
	CO5	Apply the concept of linear programming to optimize the solution				
	CO6	Describe the idea of backtracking, branch and bound strategy to solve some				
		problems.				

Module No.	dule No. Unit Topics		Ref.	Hrs.
	No.			
Foundations	1.1	The role of Algorithms in computing, Analyzing algorithms,	1,2	10
		Designing Algorithms		
	1.2	Growth of Functions-Asymptotic notation, Mathematical	1,2	
		Background for algorithm analysis		
	1.3	Recurrences, The substitution method, The recursion-tree method,	1,2	
Divide and		The master method, Randomized algorithms, Linear time sorting		
Conquer	1.4	Divide and Conquer Approach: Analysis of Merge sort, Analysis	1,2	
Approach		of Quick sort, Strassen, Fibonacci, Polynomial Multiplication		
Dynamic	2.1	Assembly-line Scheduling, Matrix-chain multiplication, Elements	1,2	10
Programming		of dynamic programming, Matrix-chain multiplication, Longest		
		common subsequence		
Greedy	2.2	Elements of the greedy strategy, Huffman codes, Minimum	1	
Algorithms		Spanning Trees.		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Amortized Analysis	2.3	Aggregate analysis, The accounting method, Table Doubling, The potential method	1	
Graph Algorithms	3.1	Single-Source Shortest Paths-The Bellman-Ford algorithm, Dijkstra's algorithm, Difference constraints and shortest paths All-Pairs Shortest Paths-The Floyd-Warshall algorithm Maximum Flow-Flow networks, The Ford-Fulkerson method, Maximum bipartite matching, Red Black Tree		10
NP Completeness	3.2	NP-Completeness: NP-completeness and reducibility, NP- completeness proofs, NP-complete problems,	1,4	
Approximation Algorithms	4.1	Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem, The subset-sum problem	1,2	6
Applied Algorithms	4.2	Number-Theoretic : Number Theoretic notion, Greatest common divisor, The Chinese remainder theorem, RSA String Matching Algorithms :The Rabin-Karp algorithm, The Knuth-Morris-Pratt algorithm, Probabilistic Algorithm: Game Theoretic Techniques Randomized Algorithms: Monte Corlo and Las Vegas algorithm	1,3	8
Linear Programming	Programming Duality		1,2	8
Advance topic			1,2,3	
			Total	52

In-Semester Examination (ISE): The assessment includes the submission of a term paper by each student on the contemporary work related to Advanced Algorithms and Complexity.

References:

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", PHI, India Second Edition
- [2] Horowitz, Sahani and Rajsekaran, Fundamentals of Computer Algorithms", Galgotia
- [3] Rajeev Motwani, PrabhakarRaghavan, "Randomized Algorithm", Cambridge University Press
- [4] Aho, Hopcroft, Ullman: The Design and analysis of algorithms", Pearson Education 2. Vijay V. Vajirani, "Approximation Algorithms", Spring