

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
CE912	Big Data Analytics and	4			4			4
	Management(BDAM)		Examination Scheme					
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			age)

Pre-requisite	Pre-requisite Core Java,						
Course Codes aw		areness of RDBMS is desirable					
At the end of s	At the end of successful completion of the course, students will be able to						
	CO1 Understand the basic concepts of Big Data and Hadoop as processing						
		platforms for Big Data					
	CO2	Understand the need of Map Reduce and to develop Mapper, Reducer					
		tasks					
Course	CO3	To understand Text Analytics, Recommendation System and Clustering					
Outcomes		approaches					
	CO4	Understand concept of data streams, Link Analysis, Social Mining Graphs					
		and its real life applications					
	CO5	Learn about the different options for importing or loading data into HDFS					
		data sources such as relational databases, data warehouses, web server logs					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Big Data and Hadoop	2	10
	1.1	Hadoop Ecosystem, Hadoop Architecture(Name Node, Job		
		Tracker, Task Tracker, Data Node, Secondary Name Node),		
		JobTracker functionality, Namenode Backup(SNN)		
	1.2	Apache Hadoop and Hadoop Ecosystem, HDFS Storage,	2	
	1.3	Hadoop File System APIs, Anatomy of a File Read, Anatomy of a		
		File Write, Rack Awareness		
2		Developing Map Reduce	1,2	12
	2.1	Distributed Computing Concept (Map and Reduce), Anatomy of a	2	
		MapReduce Job Run(MR1), Running on a cluster, Packaging,		
		Launching a Job, The MapReduce Web UI, Retrieving the Results		
		167, Debugging a Job 169		
	2.2	Map Reduce Algorithms, Matrix-Vector Multiplication, Map	1	
		Reduce and Relational Operators, Matrix Multiplication of Large		
		Matrices, Shuffle and Sort,		
	2.3	Hadoop Logs, Remote Debugging, Advanced Map Reduce	2	

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

		Concepts, Combiner, Partitioner, Distributed Cache(Map Side Join),		
		Reduce Side join		
3		Clustering Approaches, Text Analytics and Recommendation	1	10
3		System	1	10
	3.1	CURE Algorithm, Stream-Computing, A Stream-Clustering		4
	3.1	Algorithm,		7
		Initializing & Merging Buckets, Answering Queries		
	3.2	Introducing text mining, text mining techniques, Understanding		3
	J.2	Text Mining Process, Sentiment Analysis		
	3.3	Introduction to RS, content based RS, collaborative RS, hybrid RS.		3
	0.0	Issues and challenges RS, examples of real word RS, e.g., Amazon,		
		mobile RS, etc.		
4	4.1	Mining Data Streams: Introduction, The Stream Data Model		5
•		Sampling Data in a Stream: Obtaining a Representative Sample,		
		The General Sampling Problem, Filtering Streams:		
		The Bloom Filter, Analysis., Counting Distinct Elements in a		
		Stream, Counting Ones in a Window:		
	4.2	Link Analysis: PageRank Definition, Structure of the web, dead		3
		ends, Using Page rank		
		in a search engine, Efficient computation of Page Rank: PageRank,		
		Topic sensitive Page Rank, link Spam, Hubs and Authorities.		
	4.3	Mining Social Nework Graphs: Mining Social-Network Graphs		2
		11.1 Social Networks as Graphs, Clustering of Social-Network		
		Graphs, SimRank		
5		Managing Big Data	2, 3	10
	5.1	Moving Data into Hadoop		
		Load Scenarios		
		1. Understand how to load data at rest, in motion		
		2. Understand how to load data from common data		
		sources e.g. RDBMS		
		Using Sqoop		
		1. Import data from a relational database table into		
		HDFS		
		Use Sqoop import and export command		
	5.2	Flume Overview		
		1. Describe Flume and its uses		
		2. How Flume works		
		Using Flume		
		1. List the Flume configuration components		
		2. Describe how to start and configure a Flume agent		
	5.3	Introduction to Oozie Workflows		
		1. Explain the use for Oozie workflows		
		2. Describe a workflow		
		3. List some of the workflow elements		
		Oozie Coordinator		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

 Explain the use for the Oozie coordinator List some of the coordinator elements Describe how to submit a workflow job and a coordinator job 		
]	[otal	52

References:

- [1] Jure Leskovec, Anand Rajaraman, Jeffrey Ullman, "Mining Massive Datasets", Cambridge University Press, 2nd Edition.
- [2] Tom White, "Hadoop, the Definitive Guide", O'Reilly, Yahoo Press, 3rd Edition.
- [3] Tanmay Deshpande, "Hadoop Real-World Solutions Cook Book", Packt Publishing, 2nd Edition.