

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ILE913	Operations Research(OR)	3			3			3
		Examination Scheme						
		ISE		MSE	ESE			
		10		30	100 (60% Weightage)			

Pre-requisite	Linear	Algebra			
Course	Analys	Analysis of Algorithms			
At the end of successful completion of the course, students will be able to					
	CO1	Translate real world problems into mathematical formulation			
	CO2	2 Solve problems based on linear programming, Transportation model and			
		Integer programming			
	CO3	Design a dynamic system as a queuing model and compute important			
Course		performance measures			
Outcomes	CO4	Solve problems using dynamic programming			
	CO5	Solve network models like the shortest path, minimum spanning tree, and			
		maximum flow problems			
	CO6	Develop the mathematical formulation of real world problems using Game			
		theory			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
		Introduction to Operations Research :	1,2,5,8	14
1		Introduction to OR Modeling Approach and various real life		
		situations		
	Linear Programming: Introduction to linear programming, Formulation of the problem,			
		Graphical method, Simplex method, Duality and Sensitivity		
		analysis		
	Transportation Model: Definition of the transportation model, non-traditional			
		transportation models, Transportation algorithm, Assignment		
		model		
		Integer Programming		
		Formulations, Zero-one problem-additive algorithm, Gomary's		
		cutting plane algorithm, Branch and bound algorithm for IP		
		Dynamic Programming:	1,7	6
2		Introduction, recursive nature of computations in Dynamic		
		programming, forward and backward recursion, Dynamic		
		programming applications		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3	Network Models: Minimum spamming trees, Shortest path problems, Maximum flow problems, Minimum cost flow problem, CPM and PERT	1,5,6,8	6
4	Queuing model:Introduction, Basic Definitions and Notations, AxiomaticDerivation of the arrival and Departure (Poisson Queue), PureBirth and Death Models, Poison Queue Models	1,2,6	6
5	Non linear Programming: Gradient Method, Kuhn Tucker conditions, Quadratic Programming, Convex programming	1,3,7	5
6	Game Theory: Introduction, Two Person zero sum Game, Saddle Point, Mini- Max and Maxi-mini Theorems, Games without saddle point, Graphical Method, Principle of Dominance.	3,5,7	5
		Total	42

References:

- [1] Hamdy A. Taha, "Operations Research: An Introduction", Prentice-Hall of India, 6th Edition.
- [2] F.S. Hiller, G. J. Lieberman, "Introduction to Operations Research,", McGraw Hill, 8th Edition.
- [3] Kanti Swarup, P. K. Gupta, Man Mohan " Operations Research,", S. Chand & Sons, 14th Edition.
- [4] Gupta P. K. and. Hira D.S., "Operations Research", S. Chand & Company, 5th Edition.
- [5] Billey E. Gillett, "Introduction to Operations Research A Computer-Oriented Algorithmic Approach", Tata McGraw Hill Edition
- [6] Wayne L. Winston, "Operations Research Applications and Algorithms", Cengage Learning, 4th Edition
- [7] J. K. Sharma, "Operations Research Theory and Applications", MacMillan, 2nd Edition
- [8] S. D. Sharma, "Operations Research", Kedar Nath and Ram nath