

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	T	P	L	T	P	Total	
CEE92D	Machine Learning(ML)	3			3			3	
		Examination Scheme							
		ISE MS			SE	ESE	ESE		
		10	.0 30			100 (60	100 (60% Weightage)		

Pre-requisite Course Codes		se Codes	Fundamentals of AI and Soft Computing,				
			Statistics and probability				
At the end of successful completion of the course, students will be able to							
Course Outcomes	CO1	Exhibit the knowledge about basic concepts of Machine Learning					
	CO2	Identify machine learning techniques suitable for a given problem					
	CO3	Solve the problems using various machine learning techniques					
	CO4	Apply Dime	Apply Dimensionality reduction techniques.				
	CO5	Design appl	lication using machine learning techniques				

Module	Unit	Topics		Hrs.
No.	No.			
1		Introduction to Machine Learning		4
	1.1	Machine Learning, Types of Machine Learning, Issues in	1,2,3,4	
		Machine Learning, Application of Machine Learning, Steps		
		in developing a Machine Learning Application.		
2		Introduction to Neural Network		
	2.1	Introduction – Fundamental concept – Evolution of Neural	6	4
		Networks – Biological Neuron, Artificial Neural Networks,		
		NN architecture, Activation functions, McCulloch-Pitts		
		Model.		
3		Learning with Regression and trees:		10
	3.1	Learning with Regression: Linear Regression, Logistic	2,3	
		Regression.		
		Learning with Trees: Decision Trees, Constructing		
		Decision Trees using Gini Index, Classification and		
		Regression Trees (CART).		
4		Learning with Classification and clustering:		10
	4.1	Classification: Rule based classification, classification by	3,4	
		Bayesian Belief networks, Hidden Markov Models.		
		Support Vector Machine: Maximum Margin Linear		
		Separators, Quadratic Programming solution to finding		
		maximum margin separators, Kernels for learning non-linear		
		functions.		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.2	Clustering: Expectation Maximization Algorithm,	2	
		Supervised learning after clustering, Radial Basis functions.		
5		Dimensionality Reduction:		8
	5.1	Dimensionality Reduction Techniques, Principal	1,4	
		Component Analysis, Independent Component Analysis,		
		Single value decomposition.		
6		Machine Learning Applications		
	6.1	Learning Associations, Classification, Regression,	2	
		Unsupervised learning.		6
		Total		42

References:

- [1] Peter Harrington "Machine Learning In Action", DreamTech Press
- [2] Ethem Alpaydın, "Introduction to Machine Learning", MIT Press
- [3] Tom M.Mitchell "Machine Learning" McGraw Hill
- [4] Stephen Marsland, "Machine Learning An Algorithmic Perspective" CRC Press
- [5] J.-S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- [6] Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.