

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	Т	Р	L	Т	Р	Total	
CE921	Network Analysis and	4			4			4	
	Design (NDA)	Examination Scheme							
		ISE		N	ISE	ESE	ESE		
		10	10 3		0	100 (60	100 (60% Weightage)		

Pre-requisite Course Codes	Computer Networks				
At the end of successful comp	letion c	of the course, students will be able to			
	CO1	Understand the theoretical issues in protocol design and apply it			
	s to CO2 Ur the CO3 Sin net CO4 De	to Quality of service in networks			
	CO2	Understand issues in the design of network processors and apply			
		them to design network systems			
	CO3	Simulate working of wired and wireless networks to understand			
Course Outcomes		networking concepts			
	CO4	Develop solutions by applying knowledge of mathematics,			
		probability, and statistics to network design problems.			
	CO5	Understand the basics of software defined networking and explore			
		research problems in that area.			

Module No.	Unit	Topics	Ref.	Hrs.
	No.			
Internetworking	1.1	Congestion control and Resource allocation: Issues of Resource	1,2	05
		Allocation, Queuing Disciplines: FIFO, Fair Queuing, TCP	7	
		Congestion Control: Additive Increase/Multiplicative Decrease,		
		Slow Start, Fast Retransmit and Fast Recovery.		
	1.2	Congestion-Avoidance Mechanisms: DECbit, Random Early	1.2	05
		Detection (RED), Source-Based Congestion Avoidance, Quality		
		of Service: Application Requirements, Integrated Services		
		(RSVP), Differentiated Services (EF, AF)		
Routing	2.1	IPv4 Routing Principles, Routing Information Protocol (RIP),	2.3	08
		IGRP and EIGRP, OSPF for IPv4 and IPv6, Border Gateway		
		Protocol (BGP), EIGRP, High Availability Routing		
IPv6	3.1	IPv4 deficiencies, patching work done with IPv4, IPv6		08
		addressing, multicast, Anycast, ICMPv6, Neighbour Discovery,		
		Routing, Resource Reservation, IPv6 protocols		
Network Design	4.1	Designing the network topology and solutions-Top down	1,2	14
		Approach: PPDIOO – Network Design Layers - Access Layer,		
		Distribution Layer, Core/Backbone Layer, Access Layer Design,		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

			Total	52
OpenFlow				
Networking and		Network Function Virtualization-Concepts.		
Defined		Planes, SDN Controllers, Introduction to Openflow Protocol,		
Software	5.2	Introduction to Software Defined Networking, Control and Data	5,6	04
		ATCP.		
Networks		Wireless Networks: DSDV, DSR, AODV, ZRP. Transport Layer:		
Wireless		MACA-BI, DPRMA, MACA/PR. Routing Protocols for Ad Hoc		
Ad Hoc	5.1	MAC Protocols for Ad Hoc Wireless Networks: MACA/W,	4,5	08
		Traditional WAN Technologies, VPN Design.		
		and Data Center Design, Wireless LAN Design, WAN Design:		
		Design Rules and Campus Design best practices, Virtualization		
		Backbone Network Design, Enterprise LAN Design: Ethernet		

In-Semester Examination (ISE): The assessment includes the submission of a term paper by each student on the contemporary work related to Network Analysis and Design.

References:

[1] Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, Elsevier, Fourth Edition.

[2] Philip M. Miller, TCP / IP: The Ultimate Protocol Guide Applications, Access and Data Security - Vol 2, Wiley.

[3] Pete Loshin, IPv6: Theory, Protocols and Practice, Morgan Kaufmann, 2nd Edition, 2004.

[4] C. Siva Ram Murthy, B.S. Manoj, Ad Hoc Wireless Networks: Architectures and, Prentice Hall, 2004.

[5] Thomas D NAdeau and Ken Grey, Software Defined Networking, O'Reilly, 2013.

William Stallings, High-Speed Networks and Internets, Pearson Education, 2nd Edition, 2002.