

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Coue		L	Т	Р	L	Т	Р	Total	
ET911		4			4			4	
	Advanced Digital Signal Processing	Examination Scheme							
		Theory Marks							
		ISE]	MSE	ESE			
		10 30 100 (60% Weig			Weigh	tage)			

Pre-requisite Course Codes		e Codes	Signals and Systems, Discrete Time Signal Processing				
	CO1	To design multirate DSP systems.					
	CO2	Implement adaptive filters for a given application					
Course	CO3	Study and apply the techniques of power spectrum estimation and wavelet					
Outcomes		theory for va	arious applications.				
	CO4	Apply Signa	l processing tools to bio-medical signal processing.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Discrete Random Signal Processing	1	08
	1.1	Weiner Khitchine relation - Power spectral density – filtering random		1
		process, Spectral Factorization Theorem, special types of random		
		process – Signal modeling-Least Squares method, Pade		
		approximation, Prony's method, iterative Prefiltering, Finite Data		
		records, Stochastic Models.		
2		Spectrum Estimation	5	08
		Non-Parametric methods - Correlation method - Co-variance		1
		estimator - Performance analysis of estimators – Unbiased consistent		
		estimators - Periodogram estimator - Barlett spectrum		
		estimation - Welch estimation - Model based approach - AR, MA,		
		ARMA Signal modeling -Parameter estimation using Yule-Walker		
		method.		
3		Linear Estimation and Prediction	5,8	08
	3.1	Maximum likelihood criterion - Efficiency of estimator - Least mean		
		squared error criterion -Wiener filter - Discrete Wiener Hoff		
		equations - Recursive estimators - Kalman filter - Linear		
		prediction, Prediction error - Whitening filter, Inverse filter		
		-Levinson recursion, Lattice realization, Levinson recursion		
		algorithm for solving Toeplitz system of equations.		
4		Adaptive Filters	6	08
	4.1	FIR Adaptive filters - Newton's steepest descent method - Adaptive		
		filters based on steepest		
		descent method - Widrow Hoff LMS Adaptive algorithm - Adaptive		
		channel equalization -		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

		Adaptive echo canceller - Adaptive noise cancellation - RLS Adaptive filters - Exponentially weighted RLS - Sliding window RLS - Simplified IIR LMS Adaptive filter.		
5	5.1	Multirate Digital Signal Processing	5	08
		Mathematical description of change of sampling rate - Interpolation and Decimation -Continuous time model - Direct digital domain approach - Decimation by integer factor -Interpolation by an integer factor - Single and multistage realization - Poly phase realization - Applications to sub band coding - Wavelet transform and filter bank implementation of wavelet expansion of signals.		
6		Application of Digital Signal Processing to Biomedical Signal Processing	12	08
	6.1	ECG preprocessing, QRS template, QRS detection methods, performance measure for QRS detection.		
	6.2	Adaptive removal of ocular artifacts from human EEGs- Methods for removal and control of ocular artifacts, online Ocular Artifacts Removal (OAR) algorithm and system, hardware for online OAR system, system testing and experimental results.		
			Total	48

References:

[1] John G. Proakis and Dimitris G. Manolakis, "Digital Signal Processing", PHI, 2005.

[2] Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons Inc., New York, 2006.

- [3] Sophoncles J. Orfanidis, "Optimum Signal Processing", McGraw-Hill, 2000.
- [4] Simon Haykin, "Adaptive Filter Theory", Prentice Hall, Englehood Cliffs, NJ1986.

[5] S. Kay," Modern Spectrum Estimation Theory And Application", Prentice Hall, Englehood Cliffs, Nj1988.

[6] P. P. Vaidyanathan, "Multirate Systems And Filter Banks", Prentice Hall, 1992.

[7] S. M. Kay, Modern Spectrum Estimation Theory and Application", PHI.

[8] K. P. Soman, K.I. Ramchandran and N. G. Reshmi, "Insight into Wavelets: From theory to practice, Third Edition PHI, 2010.

[9] Rangaraj M. Rangayyan, "Biomedical Signal Analysis- A Case Study Approach", Wiley 2002.

[10] Willis J. Tompkins, Biomedical Digital Signal Processing, PHI, 1999.

[11] Sen M Kuo, Bob H Lee and W Tian, "Real Time Signal processing: Fundamentals, Implementations and Applications" Springer, Wiley Publishers, Third Edition 2013.

[12] S. K. Mitra, "Digital Signal Processing", TMH, 2001

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

[13] Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing, A Practical Approach", Pearson Education, 2008.

[14] D. C. Reddy, Biomedical Signal Processing Principles and Techniques, Tata Mc Graw-Hill, 2005.

[15] A. H. Sayed, "Adaptive filters", Wiley Student Edition, 2010.

[16] S. Thomas Alexander, Adaptive signal processing-Theory and Applications, Springer – Verlag.

[17] Torrence, Christopher, and Gilbert P. Compo, "A practical guide to wavelet analysis." Bulletin of the American Meteorological society Jan. 1998.

[18] Burrus, C. Sidney, Ramesh A. Gopinath, and Haitao Guo. "Introduction to wavelets and wavelet transforms." Prentice Hall Inc. 1997.

[19] Paul S. Addison, "The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance." CRC press, 2002.