

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ET913	Embedded System	4			4			4
		Examination Scheme						
		Theory Marks						
		ISE]	MSE	ESE		
		10			30	100 (60% Weightage)		

Pre-requisite Course Codes		e Codes	Microprocessors and Microcontrollers		
	CO1	01Understand Wireless Sensor Networks architecture and technology.02Able to classify functions of WSN protocol stack.			
	CO2				
Course	CO3	Understand various advanced architectures and programming models			
Outcomes	CO4	Able to part	ition Software and Hardware for a given application		
	CO5	Able to unde	erstand and design communication protocols		
	CO6	Able to mod	lel Real-Time signal processing for control applications		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Sensor Networks: Background of sensor network	7	07
		technology, sensor network architectural elements,		
		design challenges, Technologies for wireless sensor network, sensor		
		node technology, hardware and		
		software, sensor taxonomy, Classification of Sensor		
		Networks, Transmission Technologies for Sensor Networks.		
2		WSN Protocol Stack: MAC Layer protocols, Routing	8,9	10
		Layer protocols, Transport control Protocols, High Level		
		Application Layer Support, Adapting to the		
		Inherent Dynamic Nature of WSNs, Cognitive Radio based		
		sensor Networks. Nano Sensor Networks.		
3		Architecture of embedded systems, Programming models for	1,2	10
		Single-Core and Multi-Core structures.Free RTOS Scheduling and		
		Task Management – Real-time scheduling, Task Creation, Inter task		
		Communication, Pipes, Semaphore, Message Queue, Signals,		
		Sockets, Interrupts.		
4		Software / Hardware partitioning - Co design overview - Co	3	05
		simulation, synthesis and verifications - Re-configurable computing -		
		System on Chip (SoC) and IP cores - Low-Power RT Embedded		
		Systems - On-chip Networking .		
5		GPS, GSM, Bluetooth, Zigbee module interfacing, data processing	4,5,6	10
		and communication. IoT overview, IoT supported hardware		
		platforms. RTOS for 1D Signal Processing and 2D Signal		
		processing. RTOS for fault Tolerant Applications, and Control		
		Systems.		
			Total	42

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

References:

- [1] Frank Vahid and Tony Givargis, "Embedded System Design: A Unified Hardware/Software Introduction", John Wiley publication
- [2] Richard Barry, Using the FreeRTOS Real Time Kernel a Practical Guide Cortex-M3 Edition.
- [3] Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide Designing and Optimizing System Software", 2006, Elsevier.
- [4] Communicating Embedded Systems: Networks Applications, Francine Krief (Editor) February 2010, Wiley-ISTE
- [5] P Marwedel, "Embedded System Design", Springer publication Christopher Hallinan
- [6] "Embedded Linux Primer: A Practical Real-World Approach", Second Edition, Pearson Education Publication
- [7] Kazem Sohraby, Daniel Minoli, and Taieb Znati, "Wireless Sensor Networks: Technology, Protocols, and Applications", Wiley Student Edition
- [8] "Adhoc Wireless Networks Architecture and Protocols" by C.Siva Ram Murthy and B.S.Manoj, Pearson.
- [9] Holger and Andreas Willig, "Protocols and Architectures for WSN", Wiley student edition