

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course Code	Course Name	Teaching Scheme (Hrs/week)			Cred	Credits Assigned			
		L	Т	Р	L	Т	Р	Total	
ETE92X	Error Correction Code	4			4			4	
		Examination Scheme							
		Theory Marks							
			ISE		MSE	ESE			
			10		30	100 (60% Weightage)			

Pre-requisite Course Codes		Codes Digital Communication		
After successful completion of the course students will able to:				
	CO1	Apply Galois field theory to Error correction codes		
Course	CO2	Design methodology of Error correction codes for wired/wireless communication systems		
Outcomes	CO3	Analyzing algorithms for Error correction codes		
	CO4	Improving depth of Concepts through case studies		

Module	Unit	Topics	Ref.	Hr.
No.	No.			
1		Introduction to Algebra:		8
		Groups, Fields, Binary Field Arithmetic, Construction of Galois		
		Field GF (2m) and its basic properties, Computation using Galois		
		Field GF (2m) Arithmetic, Vector spaces and Matrices.		
2		Linear Codes:		10
		Block codes: Generator and Parity check Matrices, Encoding		
		circuits, Syndrome and Error Detection, Minimum Distance		
		Considerations, Error detecting and Error correcting capabilities,		
		Standard array and Syndrome decoding, Decoding circuits,		
		Hamming Codes, Reed – Muller codes, Golay code, Product codes		
		and Interleaved codes. Cyclic Codes: Introduction, Generator and		
		Parity check Polynomials, Encoding using Multiplication circuits,		
		Systematic Cyclic codes – Encoding using Feedback shift register		
		circuits, Generator matrix for Cyclic codes, Syndrome computation		
		and Error detection, Meggitt decoder, Error trapping decoding,		
•		Cyclic Hamming codes, Golay code, Shortened cyclic codes.		10
3		BCH Codes		10
		Binary primitive BCH codes, Decoding procedures, Implementation		
		of Galois field Arithmetic, Implementation of Error correction. Non		
		– binary BCH codes: q – ary Linear Block Codes, Primitive BCH		
		codes over GF (q), Reed – Solomon Codes, Decoding of Non –		
		Binary BCH and RS codes: The Berlekamp - Massey Algorithm.		10
4		Convolutional Codes:		10
		Encoding of Convolutional codes, Structural properties, Distance		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	properties, Viterbi Decoding Algorithm for decoding, Soft – output		
	Viterbi Algorithm, Stack and Fano sequential decoding Algorithms,		
	Majority logic decoding.		
5	Concatenated Codes and Turbo Codes:		10
	Single level Concatenated codes, Multilevel Concatenated codes,		
	Soft decision Multistage decoding, Concatenated coding schemes		
	with Convolutional Inner codes, Introduction to Turbo coding and		
	their distance properties, Design of Turbo codes		
6	Applications:		10
	Case studies of ECC related to various wired and wireless		
	Communication Networks, Neural Networks, DVB and DAB,		
	Cognitive Radio		
		Total	48

References:

- [1] Shu Lin & Daniel J. Costello, Jr. "Error Control Coding" Prentice Hall, Second Edition, 2004.
- [2] S. B Wicker, Error Control Systems for Digital Communication and Storage, Prentice Hall International, 1995.
- [3] Blahut R. E, Theory and Practise of Error Control Codes, Addisson Wesley, 1983
- [4] Blahut R.E., Algebraic codes for Data transmission, Cambridge University Press, 2003