

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ET921	Statistical Signal Processing	4			4			4
		Examination Scheme						
		Theory Marks						
		ISE]	MSE	ESE		
		10			30	100 (60% Weightage)		

Pre-requisite Course Codes		e Codes				
	CO1	Generalize the properties of statistical models in the analysis of signals using				
		Stochastic processes				
Course	CO2	CO2 Outline various estimation methods to accomplish the signal modeling				
Outcomes	CO3	Principle of various estimators and choose right one for an application				
	CO4	Design and development of filters using classical and adaptive algorithms.				
	CO5	Differentiate the importance of various spectral estimation techniques				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Review of random variables: Distribution and density functions,		8
		moments, independent, uncorrelated and orthogonal random		
		variables; Vector-space representation of Random variables,		
		Schwarz Inequality Orthogonalit principle in estimation, Central		
		Limit theorem, Random processes, wide-sense stationary processes,		
		autocorrelation and autocovariance functions, Spectral		
		representation of random signals, Wiener Khinchin theorem		
		Properties of power spectral density, Gaussian Process and White		
		noise process, Linear System with random input, Spectral		
		factorization theorem and its importance, innovation process and		
		whitening filter, Random signal modelling: MA(q), AR(p),		
		ARMA(p,q) models.		
2		Classical Detection and Estimation Theory: Introduction, simple		10
		binary hypothesis tests, M Hypotheses, estimation theory,		
		composite hypotheses, general Gaussian problem, performance		
		bounds and approximations.		10
3		Detection of Signals – Estimation of Signal Parameters:		10
		detection and estimation in nonwhite Gaussian noise, signals with		
		unwanted parameters multiple channels and multiple parameter		
		estimation		
4		Estimation of Continuous Waveforms: Introduction, derivation		10
-		of estimator equations, a lower bound on the mean-square		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

	estimation error, multidimensional waveform estimation,		
	nonrandom waveform estimation.		
5	Linear Estimation: MA, AR, ARMA processes and their properties,		10
	MMSE linear estimate. Weiner Filter. Kalman Filter. Lattice filter		
	structure, Levinson Durbin and innovation algorithms.		
6	Spectral analysis: Estimated autocorrelation function, periodogram,		10
	Averaging the periodogram (Bartlett Method), Welch modification,		
	Blackman and Tukey method of smoothing periodogram, Parametric		
	method, AR spectral estimation and detection of Harmonic signals,		
	MUSIC algorithm		
		Total	48

References:

- [1] H. L. Van Trees. (1968). Detection, Estimation, and Modulation Theory, vol. I, John Wiley & Sons.
- [2] Steven Kay. (1993). Fundamentals of Statistical Signal Processing Volume II: Detection Theory. Prentice Hall.
- [3] M. Hays: Statistical Digital Signal Processing and Modelling, John Willey and Sons, 1996.
- [4] S. M. Kay: Modern Spectral Estimation, Prentice Hall, 1987.
- [5] Steven Kay. (1993). Fundamentals of Statistical Signal Processing Volume I: Estimation Theory. Prentice Hall.
- [6] M.D. Srinath, P.K. Rajasekaran and R. Viswanathan, "Introduction to Statistical Signal Processing with Applications," Pearson Education (Asia) Pte. Ltd. /Prentice Hall of India, 2003.