

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
CE32	Digital Logic Design and Analysis	3			3			3
		Examination Scheme						
		ISE			MSE	ESE		
		10			30	100 (60%weightage)		

Pre-requisite Course Codes		e Codes	ES11 (Basic Electrical and Electronics Engineering)			
After success	After successful completion of the course, student will be able to:					
Course	CO1	Design of di	Design of digital circuits using SOP &POS forms.			
	CO2	Construct co	Construct combinational circuits using given MSI devices.			
	CO3	Apply the knowledge of flip-flops and MSI to design counters and Shift				
Outcomes		registers.				
Outcomes	CO4	Design state	machines for given state diagrams after state reduction.			
	CO5	Describe dif	escribe different types of programmable logic devices like PAL, PLA,			
		CPLD and F	FPGA.			

Module	Unit	Topics		Hrs.
No.	No.			
1	1.1	Introduction to Number System & Digital Logic:	1,2,3	16
		Introduction to Number System, Basic gates, Universal gates, Sum		
		of products and products of sum, minimization with Karnaugh		
		Map (up to four variables) and realization. Quine Mccluskey		
		method.		
	1.2	Logic Families: Types of logic families (TTL and CMOS),	1,2,3	
		characteristic parameters (propagation delays, power dissipation,		
		Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL		
		NAND, Interfacing CMOS to TTL and TTL to CMOS.		
	1.3	Combinational Circuits using basic gates as well as MSI	1,2,3	
		devices: Half adder, Full adder, Half Subtractor, Full Subtractor,		
		Multiplexer, De-multiplexer, Decoder, Comparator (Multiplexer		
		and De-multiplexer gate level up to 4:1).		
2	2.1	Sequential Logic: Latches and Flip-Flops. Conversions of Flip-	1,2,3,4	05
		Flops, Timing Considerations and Metastability		
3	3.1	Counters: Asynchronous, Synchronous Counters, Up Down	1,2,4,5	11
		Counters, Mod Counters.		
	3.2	Mealy and Moore Machines, Clocked synchronous state machine	1,24,5	
		analysis, State reduction techniques and state assignment, Clocked		
		synchronous state machine design.		
	3.3	MSI counters and applications.	1,2,4,5	
4	4.1	Shift Registers: Shift Registers, Ring Counters, Universal Shift	1,2,4,5	05
		Register, MSI Shift registers and their applications.		
5	5.1	Programming Logic Devices: Concepts of Programmable Array	1,2,4,5	05

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Logic (PAL) and Programming Logic Array (PLA).		
5.2	Introduction to Complex Programmable Logic Device (CPLD) and	1,2,4,5	
	Field Programmable Gate Array (FPGA) architectures.		
		Total	42

References:

- [1] R. P. Jain, "Modern Digital Electronics", 4th Edition, Tata McGraw Hill, 2009.
- [2] Morris Mano, "Digital Design", 5th edition, Pearson Education, 2013.
- [3] William I. Fletcher, "An Engineering Approach to Digital Design", 1st Edition, PHI, 2009.
- [4] John F. Wakerley, "Digital Design Principles And Practices", 3rd Edition Updated, Pearson Education, Singapore, 2002
- [5] B. Holdsworth and R. C. Woods, "Digital Logic Design", 4th Edition, Newnes, 2002.