Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
CE41		3			3			3
	Design and Analysis of Algorithms	Examination Scheme						
		Theory Marks						
		ISE]	MSE	ESE		
		10			30	100(60% weightage)		

Pre-requisite Course Codes		se Codes	ES4 (Programming Methodology and Data structures)				
			CE31 (Advanced Data Structures)				
At the end of successful completion of this course, student will be able to							
	CO1	Analyze time and space complexity of an algorithm					
	CO2	Apply divide and conquer strategy to solve problems					
Course	CO3	Design an algorithm to illustrate the concept of dynamic programming					
Outcomes	CO4	Apply the concept of greedy approach to solve problems					
Outcomes	CO5	Describe the idea of backtracking, branch and bound strategy to solve					
		problems.					
	CO6	Apply the c	concept of linear programming to optimize the solution				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to analysis of algorithm	1,2,3	10
		Performance analysis, space and time complexity		
		Growth of function – Big –Oh ,Omega , Theta notation		
		Mathematical background for algorithm analysis,		
		Analysis of selection sort, insertion sort.		
	1.2	Recurrences:	1	
		The substitution method		
		Recursion tree method		
		Master method		
	1.3	Divide and Conquer Approach:	1,5	
		General method		
		Analysis of Merge sort, Analysis of Quick sort, Analysis of Binary		
		search, Finding minimum and maximum algorithm and analysis,		
		Strassen's matrix multiplication.		
2	2.1	Dynamic Programming Approach:	1,2,3	12
		General Method		
		Assembly-line scheduling		
		0/1 knapsack		
		Travelling salesman problem		

		Longest common subsequence		
	2.2	Greedy Method Approach:		
		General Method		
		Single source shortest path		
		Knapsack problem		
		Minimum cost spanning trees-Kruskal and prim's algorithm		
		Hamming code Algorithm		
3		Backtracking and Branch-and-bound:	1,4	06
		General Method		
		8 queen problem(N-queen problem)		
		Sum of subsets		
		Graph coloring		
		15 puzzle problem,		
		Travelling salesman problem.		
4		Linear Programming	1	08
		Standard and slack forms		
		Formulating problems as linear problems		
		The simplex algorithm		
		Duality		
		The initial basic feasible solution		
5		String Matching Algorithms:	1,5	06
		The naïve string matching Algorithms		
		The Rabin Karp algorithm		
		String matching with finite automata		
		The knuth-Morris-Pratt algorithm		
			Total	42

References:

- 1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, "*Introduction to algorithms*", 3rd edition, PHI publication 2009.
- 2. Ellis Horowitz, Sartaj Sahni, S. Rajasekaran. "computer algorithms" 2nd edition, Computer Science Press, 1997
- 3. Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh Vazirani, "*Algorithms*", 1st edition, Tata McGraw- Hill, 2006.
- 4. Jon Kleinberg, Eva Tardos, "Algorithm Design", 1st edition, Pearson, 2006.
- 5. Michael T. Goodrich, Roberto Tamassia, "*Algorithm Design and Application*", 1st edition, Wiley Publication, 2015.