Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
CEL43				2			1	1
	Operating System Lab	Examination Scheme						
		ISE			ESE			Total
					Practical		Oral	
			40		1	0	10	60

Pre-requisite Course Codes		odes CEL35 (Linux Lab)					
At end of successful completion of this course, student will be able to							
	CO1	To implement process system call in Unix.					
Course	CO2 Apply various process scheduling/disk scheduling algorithm.						
Outcomes	CO3	Implement inter process communication.					
Outcomes	CO4	Implement various file and memory management strategy.					
	CO5	Demonstrate BIOS system security using virtual machine.					

Exp. No.	Experiment Details	Ref.	Marks	
1	Implement process system call in Unix OS.		5	
2	Implement CPU scheduling algorithm.		5	
2	Implement Producer consumer problem using Semaphore.		5	
3	Implement bankers algorithm for deadlock avoidance.		5	
4	Implement inter process communication		5	
5	Implement system calls for mv,cp.		5	
6	Implement disk scheduling algorithm		5	
7	BIOS CMOS and BOOT process : Study BIOS setting security		5	
8	Implement demand paging .	1	5	
Total Marks				

References:

- [1] Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey 9th edition.
- [2] Maurice J. Bach, "The Design of Unix Operating System", Prentice Hall.