

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Coue		L	Τ	Р	L	Т	Р	Total
EL32	Circuit Theory	3	1		3	1		4
		Examination Scheme						
		ISE MS		MSE	ESE			
		10)	30	100 (60% Weightage)			ghtage)

Pre-requisite Course Codes		Codes	ES21 (Basic Electrical Technology)				
After successful completion of the course, student will be able to							
Course	CO1	Analyse	Analyse the given circuits using theorems and transformation techniques				
	CO2	Analyse	Analyse the given circuit using Graph Theory				
	CO3	Analyse	Analyse the given RL, RC and RLC circuits in time domain				
Outcomes	CO4	Analyse the given RL, RC and RLC circuits in frequency domain					
Outcomes	CO5 Pre	Predict	dict the circuits using Foster and Cauer realization methods				
	CO6	Explain the concept of two port network, relation between the parameters					
		and thei	r interconnection				

Module	Unit	Topics	Ref.	Hrs.	
No.	No.				
1	1.1	Analysis of DC circuits: Analysis of circuits with and without	3	10	
		controlled sources using generalized loop, node matrix,			
		Superposition, Thevenin, Norton, Maximum Power transfer,			
		Millman theorems			
	1.2	Analysis of coupled circuits: Self and mutual inductances,	1		
		coefficient of coupling, Dot convention, equivalent circuit, solution			
		using loop analysis			
2	2.1	Graph Theory: Concept of loop, tree, co-tree, incidence matrix,	4	6	
		cut set matrix and tie set matrix			
	2.2	Tellegen's theorem, Planar and Non planar graphs, Duality principle	4		
3	3.1	Time domain analysis of R-L and R-C circuits: Forced and	1,3	12	
		natural response, time constant, initial and final values			
		Solution using first order equation for standard input signals:			
		Transient and steady state time response, solution using universal			
		formula			
	3.2	Time domain analysis of R-L-C circuits: Forced and natural	1,3		
		response, effect of damping			

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Solution using second order equation for standard input			
		signals: Transient and steady state time response			
	3.3	Frequency domain analysis of RLC circuits: S-domain	1,3		
		representation, applications of Laplace Transform in solving			
		electrical networks			
4	4.1 Network Function: driving point and transfer function, Poles and				
		Zeros, calculation of residues by analytical and graphical method,			
		frequency response			
	4.2	Positive real functions: Concept of positive real function, testing	2		
		for Hurwitz polynomials, testing for necessary and sufficient			
		conditions for positive real functions			
	4.3	Synthesis of RC, RL, LC circuits: Concepts of synthesis of RC,	2		
		RL, LC driving point functions.			
5	5.1	Parameters: Open Circuit, Short Circuit, Transmission and Hybrid	1	8	
		parameters, relationships among parameters, reciprocity and			
		symmetry conditions			
	5.2	Series/parallel connection: T and Pi representations,	1		
		interconnection of Two-Port networks			
	1	1	Total	42	

References:

- [1] A. Chakrabarti, "Circuit Theory", Dhanpat Rai and Co., New Delhi, Edition 2013
- [2] Franklin F Kuo, "Network Analysis and Synthesis", Wiley, Second Edition
- [3] M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, Third Edition
- [4] D. Roy Choudhury, "Networks and Systems", New Age International Pvt Ltd, Wiley, Second Edition.