

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	T	P	L	T	P	Total
EL33	Digital Circuits	3	1		3	1		4
		Examination Scheme						
		ISE		I	MSE	ESE		
		10			30 100 (60% Weightage)		ntage)	

Pre-requisite Course Codes		e Codes	ES21 (Basic Electrical Technology)				
After success	After successful completion of the course, student will be able to						
	CO1	Explain vari	ous logic gates, SOP, POS forms and their minimization with k-				
		map for given combinational circuits.					
	CO2	Construct combinational circuits using given MSI devices.					
Course	CO3	Discuss different types of programmable logic devices like PAL, PLA, CPLD					
Outcomes		and FPGA.					
	CO4	Apply the kn	nowledge of flip-flops and MSI to design sequential circuits				
	CO5	Design state	machines for given state diagrams after state reduction				
	CO6	Discuss fault	t models and testing methods for digital circuits				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Logic Gates: Basic gates, Universal gates, Sum of products and	1,2,3	12
		products of sum, minimization with Karnaugh Map (upto four		
		variables), Quine Mc'Clusky method and realization.		
	1.2	Logic Families: Types of logic families (TTL and CMOS),	1,2,3	
		characteristic parameters (propagation delays, power dissipation,		
		Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL		
		NAND, Interfacing CMOS to TTL and TTL to CMOS.		
	1.3	Combinational Circuits using basic gates as well as MSI	1,2,3	
		devices: Half adder, Full adder, Half Subtractor, Full Subtractor,		
		Multiplexer, Demultiplexer, Decoder, Comparator (Multiplexer and		
		Demultiplexer gate level upto 4:1).		
2	2.1	Sequential Logic: Latches and Flip-Flops. Conversions of Flip-	1,2,3	12
		Flops, Timing Considerations and Metastability		
	2.2	Counters: Asynchronous, Synchronous Counters, Up Down	1,2,3	
		Counters, Mod Counters, Ring Counters Shift Registers, Universal		
		Shift Register		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3	3.1	Mealy and Moore Machines, Clocked synchronous state machine	4,5	08
		analysis, State reduction techniques and state assignment, Clocked		
		synchronous state machine design.		
	3.2	MSI counters, MSI Shift registers and their applications	4,5	
4	4.1	Concepts of PAL and PLA.	4,5	05
		Introduction to CPLD and FPGA architectures.		
5	5.1	Fault Models, Stuck at faults, Bridging faults, Controllability and	6	05
		Observability		
	5.2	Path sensitization, ATPG, Design for Testability, Boundary Scan	6	
		Logic, JTAG and Built in self test.		
	•		Total	42

References:

- [1] William I. Fletcher, 'An Engineering Approach to Digital Design', PHI., First Edition
- [2] R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill, Forth Edition
- [3] Morris Mano, "Digital Design", Pearson Education, Forth Edition
- [4] John F. Wakerly, "Digital Design Principles And Practices, third Edition Updated, Pearson Education, Third Edition
- [5] Stephen Brown and Zvonko Vranesic, "Fundamentals of digital logic design with VHDL", McGraw Hill, Second Edition.
- [6] B. Holdsworth and R. C. Woods, "Digital Logic Design", Newnes, Forth Edition