

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ELL34	Electronics Instruments and Measurement Lab			4			2	2
		Examination Scheme						
		ISE		ESE			Total	
				Practical		Oral		
			40			-	20	60

Pre-requisite Course Codes			EL34 (Electronics Instruments and Measurement)			
After successful completion of the course, student will be able to						
Course Outcomes	CO1	Describe t	Describe the working of measuring instruments available in the lab.			
	CO2	Find out a	Find out and verify the manufacturers, make, models, market cost and			
		specificati	specifications of the given instrument.			
	CO3	Select the suitable test and measuring instrument for the given circuit.				
	CO4	Operate th	e instrument for observing and recording the given signal in time			
		domain an	d frequency domain.			
	CO5	Recognize	the importance of calibration of instruments.			
	CO6	Validate c	haracteristics of transducer to measure electrical and non electrical			
		quantities.				

Teaching Learning Methodology: Role Play Model

a. Instructor:

Responsibilities:	Explanation of theoretical background
-	To provide required sample formats
	To guide students in identification of appropriate online material.
	Supervision and assessment of overall activity
	Summarize the activity
	-

b. First Group of students : Customer

```
Responsibilities: To finalize specifications of instrument to be purchased
Prepare request for quotations
Prepare the comparative statement
Preparation for purchase order
```

c. Second Group of students: Manufacturer/Vendor

Responsibilities: To maintain the specifications of the manufactured instruments

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

> To submit quotations including all applicable taxes To prepare Invoice as per purchase order

d. Third Group of Students: Sales/Service Engineer

Responsibilities: To demonstrate capabilities of various instruments and convince customer to purchase a particular instrument To prepare Delivery Challan Install the instruments and prepare Installation Report, Demonstrate all the functions and uses of the instrument

Exp. No.	Experiment Details	Ref.	Marks
1	Block diagram based working principle of ammeter, voltmeter and	1	5
	galvanometer.		
	Identification of various electronics and electrical components (resistor,		
	capacitor, inductor, diode, PNP/NPN BJTs, FETs, SCR, Fuse etc.) by		
	manual observation as well as with the help of measuring instruments.		
	Finding their specifications, manufacturers and market cost.		
	Measure resistance with a given ammeter, voltmeter and galvanometer.		
2	Block diagram based working principle of Cathod Ray Oscilloscope.	2	5
	Interpretation and use of various controls of CRO. Finding their		
	specifications, manufacturers and market cost. Identification of		
	faulty/working probe, component identification etc. with CRO. Various		
	types of accessories (types of probes, their compensation etc.) required		
	with CRO.		
	Measurement of different parameters using CRO and obtain Lissageous		
	patterns.		
3	Block diagram based working principle of function generator, signal	2	5
	generator and DSO.		
	Interpretation and use of various controls of function and signal		
	generator. Finding their specifications, manufacturers and market cost.		
	Adjust the various waveforms on a function generator and finding		
	limitations i.e. minimum and maximum output signal parameters values		
	that can be obtained.		
	Obtain the given waveform on function or signal generator and observe		
	its various parameters on DSO.		
4	To compare analog oscilloscope with digital storage oscilloscope and	2	5
	note down the advanced features and functions. Obtain a waveform on		
	5Digital Storage Oscilloscope and store it in different format on your		
	storage device and observe it on PC. Compare the measurements of		

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

	sinusoidal signal on analog CRO with measurement on DSO.		
	Compare features of DSO with different model numbers and find out the		
	difference in cost because of features or added functions.		
5	Introduction to various features and functions of an arbitrary function	2	5
	generator in order to generate common stimulus signals for electronic		
	measurements. Explain the block diagram and basic controls of an		
	arbitrary function generator.		
	Finding specifications, manufacturers, and market cost of AFG.		
	Learn how to generate several basic electronic signals. Learn how to		
	verify the signal's parameters with oscilloscope measurements. Obtain		
	waveforms for a given equation on an Arbitrary Waveform Generator.		
6	Explain working principle of energy meter and wattmeter.	1	5
	Identifications of various terminals of energy meter and wattmeter.		
	Selection of current coil and voltage coil while measuring power.		
	Measurement of power factor using wattmeter, ammeter and voltmeter.		
	Selection of wattmeter, ammeter according to load.		
	Finding specifications, manufacturer, and market cost of wattmeter,		
	voltmeter and ammeter.		
7	Explain working principle of Multimeter.	2	5
	Compare Analog Multimeter and Digital Multimeter by using it to		
	measure resistance, voltage, frequency. Identify the limitations of both		
	while testing diodes, transistors and capacitors.		
	Compare Branded Analog multimeter and Branded digital analog		
	multimeter.		
8	Describe the concept of Q factor and measure parameters for a given	3	5
	RLC circuit on Q meter and also explain the use of frequency meter.		
	Finding specifications, manufacturer, and market cost of Q meter and		
	Frequency Meter.		
9	Differentiate time domain measurement and frequency domain	3	5
	measurement.		
	Obtain analysis for a given signal on Spectrum analyzer for various		
	frequencies. Compare the sinusoidal signal frequency spectrum with		
	different standard signals.		
	Finding specifications, manufacturer, and market cost of spectrum		
	analyzer and vector analyzer.		
10	Explain the various antenna parameters and the related test & measuring	4	5
	instruments.		
	Finding specifications, manufacturer, and market cost of VSWR meter,		

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

	Vector network analyzer etc.			
	Record the various parameters for a given antennas with VNA.			
		-		
11	Block diagram based working principle of tachometer, lux meter, thermal	3	5	
	camera and radiation measurement meter. Identify their specifications in			
	terms of respective unit. Measurement of speed of motor, light intensity			
	in various lab, radiations using related instrument. Compare and			
	comment on measurement at different locations. List different			
	applications where thermal camera can be used.			
	Finding specifications, manufacturer, and market cost of Distortion			
- 10	meter.			
12	Block diagram based working principle of LVDT. Identify the	2	5	
	specifications of winding machines for LVDT available in the market			
	and design a simple LVDT using a given core and winding coil. Validate			
- 10	the characteristics of LVDT to measure distance upto 10mm	-		
13	Explain specifications of given strain gauge. Compare different types of	1	5	
	strain gauges available in the local market. Differentiate the given load			
	cell and strain gauge. Obtain the characteristics of weight vs resistance			
	for a given strain gauge. Suggest a circuit to measure weight using strain			
	gauge or load cell.	-		
14	Comment on the given RTD and LM35 according to the parameters or	2	5	
	specifications given in data sheet. Validate the characteristics of RTD			
	and LM35 to measure temperature of a specific range.		_	
15	Design the bridges to measure unknown resistance, inductor and	2	5	
1.6	capacitance. Comment on your bridge designed and its limitations.		_	
16	Explain specifications of a given ADC IC and measure the resolution of a	3	5	
	given ADC IC by applying an input signal of appropriate value. Note			
	down digital outputs for different analog signal in appropriate range			
	using given logic probe and DSO.		00	
Assessment Marks				
Total Term Work Marks (80/2)				

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

References:

- [1] W. Cooper, A. Helfric, Electronic Instrumentation and Measurement Techniques, PHI, 4th edition.
- [2] C. S. Rangan, G.R. Sarma, V.S.V. Mani, Instrumentation Devices and Systems, Tata McGraw Hill, 9th edition.
- [3] A. K. Sawhney, Electrical & Electronic Instruments & Measurement, Dhanpat Rai and Sons, Eleventh ed., 2000.
- [4] Constantine A. Balanis, Antenna Theory: Analysis and Design, Wiley.