

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
	HDL Programming Lab			2			1	1
		Examination Scheme						
ELL35		ISE			ESE			Total
					Prac	tical	Oral	
			40		10	0	10	60

Pre-requisi	te Cou	rse Codes EL33 (Digital Circuits)				
After successful completion of the course, student will be able to						
	CO1	Write VHDL code to build the given hardware				
	CO2	Verify the behavior of given hardware with VHDL simulation tool				
	CO3	Write synthesizable VHDL code and perform physical verification on FPGA				
		and CPLD device				
Course	CO4	Write, simulate, synthesize and implement VHDL code with behavioral,				
Outcomes		dataflow and structural modeling style				
	CO5	Interface the external peripherals with FPGA and design a hardware to create				
		an application.				
	CO6	Interpret the RTL, synthesis, Floorplan report and optimally utilize the internal				
		esources of given FPGA				

Exp. No.	Experiment Details		Marks
1	Design, simulate and synthesize 9 bit parity generator using dataflow		5
	modeling and carry out physical verification on given FPGA.		
2	Design, simulate and synthesize ripple carry adder and carry-look ahead	1,2,3	5
	adder using structural modeling and carry out physical verification on		
	given FPGA		
3	Design, simulate and synthesize a stepper motor control hardware using	1,2,3	5
	Johnson counter. Use behavioral modeling for designing this hardware.		
	Carry out physical verification on given FPGA		
4	Write the testbench to verify the given IP.	1,2,3	5
5	Interface ADC/ DAC with FPGA. Give input signal to ADC, digitally	1,2,3	5
	amplify the input signal, give amplified data to DAC and observe the		
	amplified output on DSO.		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

6	FPGA implementation of Traffic light controller in VHDL using Finite State Machine		5
7	Design of Microcomputer using existing IP. Use instantiation for designing the hardware.	2	5
8	Mini project as an application of HDL	4	5
Total Marks			

References:

- [1] J. Bhaskar, "VHDL Primer", Pearson Education.
- [2] Gaganpreet Kaur, "VHDL Basic to Programming", Pearson
- [3] Douglas Perry, "VHDL: Programming by Example" McGraw Hill
- [4] Application notes by Xilinx and Altera