

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
EL41	Analog Electronics-II	03	01		03	01		04
		Examination Scheme						
		ISE MSE				ESE		
		10		30	100 (60% weightage)			

Pre-requisite Course Codes		e Codes	EL31 (Analog Electronics - I)		
After successful completion of the course, student will be able to					
	CO1 Illustrate DC and AC analysis of single stage FET and MOSFET amplifier cir				
	CO2	Analyze multistage amplifier circuits			
	CO3	Describe effect of negative feedback on amplifier parameters for different negative			
Course		feedback topologies			
Outcomes	comes CO4 Discuss the working of different oscillator circuits.				
	CO5 Calculate parameters for MOSFET based differential amplifier.		parameters for MOSFET based differential amplifier.		
	CO6	Describe	the working and calculate parameters for different power amplifier		
		circuits.			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	DC Circuit Analysis:	1,2	06
		Junction Field Effect Transistor (JFET): Self bias, Voltage		
		divider bias, Design and Analysis of Biasing Circuits Metal-Oxide		
		Field Effect Transistor (MOSFET): Common-Source circuits, DC		
		load line and region of operation, Common-MOSFETs		
		configurations, Analysis and Design of Biasing Circuits		
	1.2	AC Analysis:	1,2	04
		JFET Amplifiers: Small-Signal Equivalent Circuit, Small-Signal		
		Analysis MOSFET Amplifiers: Graphical Analysis, load line and		
		Small-Signal parameters, AC Equivalent Circuit, Small-Signal		
		Model. Common-Source, Source Follower, Common-Gate		
2	2.1	Multistage Amplifiers: Multistage (CS-CS), (CS-CE) cascode	3,5	04
		(CS-CG) Amplifiers & Darlington pair.		
	2.2	Frequency analysis of amplifiers: Effect of capacitors (coupling,	1,3	06
		bypass, load) on frequency response of JFET and MOSFET		
		Amplifiers, High frequency hybrid-pi equivalent circuits of		
		MOSFET, Miller Effect and Miller capacitance, unity gain		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		bandwidth, Low and high frequency response of single stage (
		CS,CG, CD) and multistage (CS-CS).		
3	3.1	Feedback amplifiers: Types of Negative Feedback, block diagram	4,5	04
		representation, Effect of negative feedback on Input impedance,		
		Output impedance, Gain and Bandwidth with derivation, feedback		
		topologies (analysis of different feedback circuits is not expected).		
	3.2	Oscillators: Positive feedback and principle of oscillations, RC	1,4,	06
		oscillators: Phase shift, Wien bridge, LC Oscillators: Hartley,	5	
		Colpitts and clapp, Tunned Oscillator (no derivations), Twin T		
		Oscillator (no derivations), Crystal Oscillator (BJT circuits		
		analysis).		
4	4.1	MOSFET Differential Amplifiers: DC Transfer characteristics,	1	04
		Small signal Analysis, differential and common mode gain, CMRR,		
		differential and common mode input impedance.		
	4.2	MOSFET Constant Current Sources: Two transistor current	1	04
		source, current relationship, output resistance. Improved three		
		transistor current source, Cascode current source, Wilson and		
		Widlar current source		
5	5.1	Power amplifiers: Power BJTs, Power MOSFETs, Heat Sinks,	1,2	06
		Class A, Class B, Class C and Class AB operation, Power		
		efficiency, Class AB output stage with diode biasing, VBE		
		multiplier biasing, input buffer transistors, Darlington configuration.		
	1		Total	42
İ				

References:

- [1] Donald A. Neamen, "Electronic Circuit Analysis and Design", TATA McGraw Hill, Second Edition.
- [2] Adel S. Sedra, Kenneth C. Smith and Arun N Chandorkar," Microelectronic Circuits Theory and Applications", International Version, OXFORD International Students Edition, Fifth Edition.
- [3] David A. Bell, "Electronic Devices and Circuits", Oxford, Fifth Edition.
- [4] S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", Tata McGraw Hill, Third Edition
- [5] Jacob Millman, Christos C Halkias, and Satyabratata TIT, "Millman's Electronic Devices and Circuits", McGrawHill, Third Edition
- [6] Muhammad H. Rashid, "Microelectronics Circuits Analysis and Design", Cengage Learning, Second Edition