

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
ET32		3	1		3	1		4
	Circuit Theory	Examination Scheme						
		ISE MSE		MSE	ESE			
		10		30	100 (60%	Weigh	tage)

Pre-requisite Course Codes		Codes ES2	ES21 (Basic Electrical Technology)		
After successf	ul comp	etion of the co	urse, students will able to		
	CO1	Analyse the	given circuits using theorems and transformation techniques		
	CO2	Analyse the	given circuit using Graph Theory		
Course	CO3	Analyse the given RL, RC and RLC circuits in time domain			
Outcomes	CO4	Analyse the given RL, RC and RLC circuits in frequency domain			
	CO5	Predict the ci	rcuits using Foster and Cauer realization methods		
	CO6	Explain the and their inte	concept of two port network, relation between the parameters erconnection		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Analysis of DC circuits: Analysis of circuits with and without controlled sources using generalized loop, node matrix, Superposition, Thevenin, Norton, Maximum Power transfer, Millman theorems		10
	1.2	Analysis of coupled circuits: Self and mutual inductances, coefficient of coupling, Dot convention, equivalent circuit, solution using loop analysis	1	
2	2.1	Graph Theory: Concept of loop, tree, co-tree, incidence matrix, cut set matrix and tie set matrix	3	6
	2.2	Tellegen's theorem, Planar and Non planar graphs, Duality principle	3	
3	3.1	Time domain analysis of R-L and R-C circuits: Forced and natural response, time constant, initial and final values Solution using first order equation for standard input signals: Transient and steady state time response, solution using universal formula	1,3	12

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3.2 Time domain analysis of R-L-C circuits: Forced and natural response, effect of damping	
1 Copolibe, circulat di duniping	
Solution using second order equation for standard input signals:	
Transient and steady state time response	
3.3 Frequency domain analysis of RLC circuits: S-domain 1,3	
representation, applications of Laplace Transform in solving	
electrical networks	
4 4.1 Network Function: driving point and transfer function, Poles and 2	6
Zeros, calculation of residues by analytical and graphical	
method, frequency response	
4.2 Positive real functions: Concept of positive real function, testing 2	
for Hurwitz polynomials, testing for necessary and sufficient	
conditions for positive real functions	
4.3 Synthesis of RC, RL, LC circuits: Concepts of synthesis of RC,	
RL, LC driving point functions.	
5 5.1 Parameters: Open Circuit, Short Circuit, Transmission and 1	8
Hybrid parameters, relationships among parameters, reciprocity	
and symmetry conditions	
5.2 Series/parallel connection: T and Pi representations, 1	
interconnection of Two-Port networks	
Total	42

References:

- [1] A. Chakrabarti, "Circuit Theory", Dhanpat Rai and Co., New Delhi
- [2] Franklin F Kuo, "Network Analysis and Synthesis", Wiley Toppan
- [3] M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi
- [4] D. Roy Choudhury, "Networks and Systems", New Age International Pvt Ltd, Wiley