

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned			
		L	Т	P	L	Т	Р	Total	
ETL33	HDL Programming Lab			2			1	1	
		Examination Scheme							
		ISE			ESE			Total	
					Prac	tical	Oral		
		40		10		10	60		

Pre-requisi	te Cou	rse Codes ET33 (Digital Circuits)			
After succes	ssful co	mpletion of the course, student will be able to			
Course Outcomes	CO1	Write VHDL code to build the given hardware			
	CO2	Verify the behavior of given hardware with VHDL simulation tool			
	CO3	Write synthesizable VHDL code and perform physical verification on FPGA and CPLD device			
	CO4	Write, simulate, synthesize and implement VHDL code with behavioral, dataflow and structural modeling style			
	CO5	Interface the external peripherals with FPGA and design a hardware to create an application.			
	CO6	Interpret the RTL, synthesis, Floorplan report and optimally utilize the internal resources of given FPGA			

Exp. No.	Experiment Details		Marks
1	Design, simulate and synthesize 9 bit parity generator using dataflow modeling and carry out physical verification on given FPGA.	1,2,3	5
2	Design, simulate and synthesize ripple carry adder and carry-look ahead adder using structural modeling and carry out physical verification on given FPGA	1,2,3	5

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Total Marks			
8	Mini project as an application of HDL	4	5
7	Design of Microcomputer using existing IP. Use instantiation for designing the hardware.	2	5
6	FPGA implementation of Traffic light controller in VHDL using Finite State Machine	4	5
5	Interface ADC/ DAC with FPGA. Give input signal to ADC, digitally amplify the input signal, give amplified data to DAC and observe the amplified output on DSO.	1,2,3	5
4	Write the testbench to verify the given IP.	1,2,3	5
3	Design, simulate and synthesize a stepper motor control hardware using Johnson counter. Use behavioral modeling for designing this hardware. Carry out physical verification on given FPGA		5

References:

- [1] J. Bhaskar, "VHDL Primer", Pearson Education.
- [2] Gaganpreet Kaur, "VHDL Basic to Programming", Pearson
- [3] Douglas Perry, "VHDL: Programming by Example" McGraw Hill
- [4] Application notes by Xilinx and Altera