

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
ETL45	Computer Methods for Circuit Simulation Lab			2			1	1
		Examination Scheme						
		ISE			ESE			Total
					Prac	tical	Oral	
		40				20	60	

Pre-requisite Course Codes		rse Codes	Programming in C BS31 (Applied Mathematics I) ET32 (Circuit theory)	
After successful completion of the course, student will be able to				
	CO1	Illustrate a network in terms algebraic equations		
Course	CO2	Apply Numerical techniques to solve linear and non linear algebraic equations Perform DC and Transient analysis on Electrical networks		
Outcomes	CO3			
	CO4	Analyze tl	ne given circuit using Monte Carlo	

Exp. No.	Experiment Details	Ref.	Marks
1	Formulation of Linear algebraic Equations for Network using Modified		5
	Nodal Analysis and Apply Gaussian Elimination and L U		
	decomposition methods for Solution		
2	Apply Indirect methods (Gauss-Seidel and Gauss Jacobi) to find	1,3,4	5
	Solution of Linear algebraic Circuit Equation		
3	Formulation of Non-Linear algebraic Equations for Network and	2,3,4	5
	Applying Newton – Raphson method to solve them		
4	Applying Newton - Raphson method for solving a MOSFET based	1,3,4	5
	Non-Linear algebraic Circuit Equations		
5	Transient simulation using Forward Eular, Backward Eular and	2,3,4	5
	Trapezoidal method. Verification of Stability in each method.		
6	Solution of differential circuit equations using linear multistep methods	1,3,4	5
7	Solution of differential circuit equations using trapezoidal ringing	1,3,4	5
8	Perform Monte-Carlo Analysis on given circuit	1,2,3,4	5
Total Marks			

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

References:

- [1] F. N. Najm, Circuit Simulation, Wiley-IEEE Press, 2010
- [2] M.B. Patil, V. Ramanarayanan, V. T. Ranganathan, Simulation of Power Electronic Circuits, Narosa
- [3] E. Balagurusamy, Numerical Methods, TATA McGRAW HILL
- [4] R. Raghuram, Computer Simulation of Electronic Circuits, New Age International