

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ET44	Integrated Circuit	3	1		3	1		4
		Examination Scheme						
		ISE]	MSE	ESE		
		10			30	100 (60% Weightage)		

Pre-requisite Course Codes	ET31(Electronics Devices and Circuits) ET33 (Digital Circuits)		
After successful completion of the course, student will be able to			
	CO1	Describe the fundamentals of Op-Amp.	
	CO2	Analyse and design applications of Op-Amp.	
Course	CO3	Design different applications using IC 555.	
Outcomes	CO4	Illustrate the function of Special Purpose ICs such as VCO, PLL, Power amplifier and DAC/ADC conversion technique.	
	CO5	Design DC power supply like LVLC, LVHC, HVLC and HVHC using	
		Regulator ICs.	

Module No.	Unit	Topics	Ref.	Hr
	No.			s.
Module 1		Operational Amplifier Overview		04
	1.1	Op-Amp symbol and Terminals, Ideal Op-Amp and Practical		
		Op-Amp characteristics, Op-Amp Parameters, open loop and		
		closed loop configurations, Virtual ground concept.		
	1.2	Inverting and Non-inverting modes, Feedback in Op-Amp		
		Circuits (Positive and Negative).		
Module 2		Applications of Operational Amplifier	1,2,3,	10
	2.1	Amplifiers: Current amplifier, difference amplifier,	4	
		instrumentation amplifier and programmable gain amplifier.		
	2.2	Converters: Current to voltage converters, voltage to current		
		converters, voltage to frequency converter, frequency to		
		voltage converter, logarithmic converters and antilog		
		converters.		
	2.3	Active Filters: Low pass, high pass, band pass and band reject		
		filters.		
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge		
		oscillator, Quadrature oscillator.		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module 3		Non-Linear Applications of Operational Amplifier	1,2,3,	10
	3.1	Comparators: Inverting comparator, non-inverting	4	
		comparator, zero crossing detector, window detector and level		
		detector.		
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting		
		Schmitt trigger, and adjustable threshold levels.		
	3.3	Waveform Generators: Square wave generator, triangular		
		wave generator, and duty cycle modulation.		
	3.4	Precision Rectifiers: Half wave, full wave and applications.		
	3.5	Peak detectors, sample and hold circuits.		
		Special Purpose Integrated Circuits		
Module 4	4.1	Functional block diagram, working, design and	1,4	08
		applications: Timer 555.		
	4.2	Functional block diagram, working and applications: VCO		
		566, PLL 565, multiplier 534, waveform generator XR 2206,		
		Power amplifier LM380.		
Module 5		Voltage Regulators	1,4	06
	5.1	Functional block diagram, working and design of three		
		terminal fixed (78XX, 79XX series) and three terminal		
		adjustable (LM 317, LM 337) voltage regulators.		
	5.2	Functional block diagram, working and design of general		
		purpose 723 (LVLC, LVHC, HVLC and HVHC) with current		
		limit and current fold-back protection.		
Module 6		ADC and DAC Conversion		
	6.1	D to A Conversion Techniques, R - 2R ladder, Multiplying	1,4	04
		DAC with Applications,		
		A to D Conversion Techniques, Dual slope ADC, Ramp ADC,		
		Successive approximation ADC.		
Total				42

References:

- 1. Sergio Franco, Design with Operational Amplifiers and analog integrated circuits, Third edition, McGraw Hill International edition, 2002.
- 2. D. Roy Choudhury and S. B. Jain, "*Linear Integrated Circuits*", New Age International Publishers, 4th Edition
- 3. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition
- 4. Robert Coughlin, Frederick F. Driscoll, Operational Amplifiers and Linear Integrated circuits, PHI Learning, sixth edition.