

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ETL43				2			1	1
	Principles of Control Systems Lab	Examination Scheme						
		ISE			ESE		Total	
				Pra	ctical	Oral		
			40			20		60

Pre-requisite Course Codes		ET43(Prine	ciples of Cor	ntrol 3	Systems)				
After successful completion of the course, student will be able to									
CO1 Examine working principle and application of given control							control	system	
		compone	components.						
CO2 Develop a program using suitable programmin						ng langua	g language for time and		
Course frequency domain analysis of a given system.									
Outcomes	Dutcomes CO3 Demonstrate the dynamic behavior of the system in time of					time don	nain and		
		frequency	domain.						
	CO4	Experim	nent the effect of compensator on the performance of control system.						
	CO5	Identify	ntify and demonstrate any control system for real life applicatio					plication	•

Exp. No.	Experiment Details	Ref.	Marks
1	To plot the Synchro transmitter characteristics and Synchro	1	5
	transmitter and receiver as an error detector.		
2	To plot Speed torque characteristic of DC servo motor.	1	5
3	To plot characteristics of Potentiometer and its loading effect for	1	5
	different conditions of load.		
4	To determine the line and load regulation characteristics of AC	1	5
	servo voltage stabilizer at different line and load conditions and		
	observe the mechanism of AC voltage stabilization as an example		
	of closed control system.		
5	Using Liner System I Trainer Kit obtain the frequency response of	1	5
	first order and second order system.		
6	Using Liner System II Trainer Kit obtain the time response of	1	5
	closed loop RLC circuit with integrator circuit and study the effect		
	of Lead, Lag Compensator on its time response. Compare these		
	results with mathematical expressions derived for the system.		
7	Some of the experiments can be combined based on the theme like	2,3,4	5
	i. fundamental of control system (Laplace and State Transition)		
	ii. time response		
	iii. stability		

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

	 a) Develop a program in Matlab/Scilab/LabVIEW to define the given closed loop transfer function of system and plot their poles & zeros on s-plane. b) Develop a program in Matlab/Scilab/LabVIEW to find the step response of a given second order control system and obtain its time domain parameters from this step response. Compare these results with mathematical calculations. c) Develop a program in Matlab/Scilab/LabVIEW for a given control system described by its state space equation to find solution in terms of state transition matrix, zero input response, zero state response, complete response. d) Develop a program in Matlab/Scilab/LabVIEW for a given control system described by its state space equation to find system is controllable or not, observable or not, to find rank of matrix and using rank comment on system controllability and observability e) Develop a program in Matlab/Scilab/LabVIEW to obtain the root locus of a system described by its Transfer Function with unity feedback, Comment on the stability of this given control system. Compare these results with mathematical calculations. f) Develop a program in Matlab/Scilab/LabVIEW to find gain margin and phase margin of the system described by its Transfer Function with unity feedback. Comment on the stability of this given control system. Compare these results with mathematical calculations. 			
8	Mini-Project: Identify the model of control system for real life	1,2,3,4	5	
	application and demonstrate controlling action for the same. Use			
Total Marks				

References:

- [5] Lab manuals
- [6] www.mathworks.com
- [7] www.scilab.org
- [8] www.ni.com/labview