

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Τ	Р	L	Т	Р	Total
ET43	Principles of Control System	03	01		03	01		03
		Examination Scheme						
		ISE	\mathbf{N}	ISE	ESE			
		10	3)	100 (60% Weightage)			

Pre-requisite Course Codes		Delta BS11 (Engineering Mathematics I)				
		BS21 (Engineering Mathematics II)	BS21 (Engineering Mathematics II)			
		BS31 (Applied Mathematics I)	BS31 (Applied Mathematics I)			
After successfu	ul compl	on of the course, student will be able to				
Course Outcomes	CO1	Classify different types of Control systems and formulate mathematical modeling of the given system.				
	CO2	Illustrate the Transient and steady state behavior of given system for standard test inputs				
	CO3	Analyze the stability of systems in time domain and frequency domain.				
	CO4	Justify the concept of Controllability and observability using State variable model				
	CO5	Apply the control theory to design the compensators to enhance stability of syste	em			
	CO6	Evaluate the system performance with the use of Compensators & Controllers				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to control system:	1,2	10
		Definition of system, Notion of feedback, Open loop and closed loop		
		systems; feedback and feedforward control structure; Examples of		
		control systems.		
	1.2	Dynamic Response: Standard test signals; Transient and steady state	1,2	
		behavior of first and second order systems; Generalized error		
		coefficients, steady state errors in feedback control systems and their		
		types.		
	1.3	Control System Modeling: Types of models Impulse response model,	1,2	
		State variable model, Transfer function model, Modeling of electrical		
		systems, translational and rotational mechanical systems.		
2	2.1	Representation of Control System :Block diagram representation of	1,2	10
		systems, Block diagram reduction methods, Closed loop transfer		
		function, signal flow graph. Mason's gain rule		
	2.2	State Space Analysis: Concepts of state space, State equations , State	1,2	
		transition matrix, properties of state transition matrix ,Solution of		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		homogeneous systems.		
	2.3	Controllability and Observalibity: Concept of controllability, Controllability analysis of LTI systems, Concept of observability, Observability analysis of LTI systems using Kalman approach, pole placement using state feedback PBH test	3,4	
3	3.1	Time Domain System Stability Analysis : Concepts of Stability	1,2	08
	2.2	Routh Hurwitz stability criteria	1 2	
	3.2		1,2	
	3.3	Root Locus Analysis: Root-locus concepts; General rules for constructing root-locus; Root-locus analysis of control systems.	1,2	
4	4.1	Frequency Domain System Stability Analysis: Relation between time and frequency response	1,2	08
	4.2	Bode Plot: Magnitude and phase plot,Method of plotting Bode plot; Stability analysis by using Gain and phase margins on the Bode plots	1,2	
	4.3	Polar plots, Nyquist stability criterions; Nyquist plot; Gain and phase margins.	1,2	
5	5.1	Compensators & Controllers: Types of compensators, Realization of basic compensators –cascade compensation in time domain and frequency domain, Design of lag, lead, lag-lead compensator using Bode plot and Root locus.	1,2	06
	5.2	Controllers : Concept of ON/OFF controllers; Concept of P, PI, PD and PID Controllers.	1,2	
	5.3	Advanced Control Systems: Introduction to Robust Control, Adaptive control and Model predictive control, Neuro- fuzzy controllers, Design of Real life applications of control system	3,4	
	•		Total	42

References:

- I. J. Nagrath, M. Gopal, Control Systems Engineering, New Age International, Fifth Edition, 2012.
- [2] M. Gopal, Control Systems: Principle and design, Tata McGraw Hill, First Edition, 1998.
- [3] Ogata.K, Modern Control Engineering, 5th edition, Prentice Hall of India, 2010
- [4] Richard C. Dorf and Robert H. Bishop, Modern Control System, Pearson, Eleventh Edition, 2013.