

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Τ	P	Total
ITL31	Advanced Data Structures Lab	-	-	2	-	-	1	1
		Examination Scheme						
		ISE			ESE			Total
		I		Pra	actical	0	ral	
		40			10	10		60

Pre-requisite Course	ES4 (Programming Methodology and Data Structures)						
Codes	IT31 (31 (Advanced Data Structures)					
After successful completion of the course, student will be able to:							
	Stude	Student will be able to					
	CO1	Implement various Linked List Operations.					
	CO2	Implement various Operations of Trees and Graphs.					
Course Outcomes	CO3	Construct different Heap structures.					
	CO4	Analyze different hashing and collision resolution techniques.					
	CO5	Choose an appropriate data structure to solve a given problem.					

Exp. No.	. Experiment Details		Marks	
1	Implement a given scenario using Linked List.	1,2	5	
2	Construct an expression tree usingBinary Trees Concept		5	
3	Develop an application to explore the uses of an AVL tree		5	
4	Develop Search application using B-Tree.		5	
5	Demonstrate an application using B+ Tree		5	
6	Implement Operations of Heap Structures		5	
7	Implement hash functions with different collision resolution techniques		5	
8	Traverse a Graph using Graph Traversal Technique	1,2	5	
Total Marks				

References:

1. Thomas H.Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, "Introduction to Algorithms", 3rd edition, MIT Press, Massachusetts, 2009.

2. Horowitz E, Sahni S and S. Rajasekaran, "Fundamentals of Computer Algorithms", 2nd edition, Galgotia Publications, New Delhi, 2010.