

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
IT31	Advanced Data Structures	3	-	-	3	-	-	3
		Examination Scheme						
		ISE			MSE	ESE		
		10			30	100 (60% weightage)		

Pre-requisite	ES4 (Programming Methodology and Data Structures)			
Course Codes				
After successful completion of the course, student will be able to:				
	CO1	Implement various operations using non linear data structures.		
Course	CO2	Apply concepts of Trees and Graphs to a given problem.		
Outcomes	CO3	3 Build various Heap Structure		
	CO4	Illustrate the hashing and collision resolution techniques.		

Module	Unit	Topics	Ref.	Hrs.
No.	N0.			
1		Linear and Non-linear Data Structures		
		Introduction to Data Structures (Stack, Queue and Singly Linked	1,2	05
		List), Circular Linked List, Doubly Linked List, Application of		
		Linked List.		
2		Trees		
	2.1	Binary Tree Terminology, Binary Search Tree and its operations,	1,2	04
		Binary Tree Traversal, Expression Tree		
	2.2	AVL Trees- Properties of AVL trees, Rotations, Insertion, and	1,2	03
		Deletion	-	
	2.3	B-Trees- Definition of B-trees, Basic operation of B-Trees,	1,2	04
		Deleting a key from B-Trees		
	2.4	Introduction to B+ Trees	1,2	03
	2.5	Introduction to Multidimensional Trees, Segment trees, k-d trees,	3	05
		Point Quad trees		
3		Graph		
		Introduction To Graph, Representation of Graph- Adjacency	1,2	04
		Matrix, Adjacency List, Graph Traversal Technique		
4		Heap Structure		
	4.1	Introduction to Heap Structures, Min Heap, Max Heap,	2	04
		Construction of Heap		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5	Hashing Introduction to Hash Table, Hash functions, Collision Resolution	1,2	04
	Technique		
		Total	42

References:

1. Thomas H.Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, "*Introduction to Algorithms*", 3rd edition, MIT Press, Massachusetts, 2009.

2. Horowitz E, Sahni S and S.Rajasekaran, "Fundamentals of Computer Algorithms", 2nd edition, Galgotia Publications, New Delhi, 2010.

3. Subrahmanian V S, "*Principles of Multimedia Database Systems*", 2nd edition, Morgan Kaufman series in Database management systems, USA, 2013.