

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	T	P	L	T	P	Total
BS31		3	1		3	1		4
	Applied Mathematics-I	Examination Scheme						
		ISE	ISE MSE ESE					
		10		30	100 (60% Weightage)			

Course Objectives:

To familiarize learners with mathematical tools and methods to solve engineering problems.

Course Outcomes:

Pre-requisite course codes		BS11 (Engineering Mathematics I) BS21 (Engineering Mathematics II)			
After successful completion of the course, student will be able to:					
	CO1	Check analyticity of function of complex variables			
	CO2	Find Laplace and Inverse Laplace Transforms			
Course Outcomes	CO3	Apply Laplace and Laplace Inverse methods to solve differential equations with initial conditions			
Outcomes	CO4	Expand functions in terms of sine and cosine series on the given interval			
	CO5	Evaluate Z-transform and Inverse Z-transform			
	CO6	Formulate and solve Linear Programming Problem arising in engineering			

Module No.	Module name	Unit No.	Topics	Ref	Hrs.
	Complex Variables	1.1	Analytic functions, Cauchy Riemann equations in Cartesian coordinates and Polar coordinates.		03
1		1.2	Harmonic functions, Analytic method and Milne Thomson methods to find f(z), Orthogonal trajectories.	1,2	04
2	Laplace &	2.1	Definition of Laplace transform, Laplace transform of constant, trigonometric, exponential functions.		02
	Inverse Laplace Transform	2.2	Properties of Laplace transform: First shifting theorem, Laplace transform of $L\{t^nf(t)\}, L\{f(t)/t\}, L\{\frac{a^n}{dt^n}f(t)\}, L\{\int_0^t f(u)du\}, L\{f(at)\}$ without proof.	2,4	04

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

				Total	42 hrs
		5.3 Duality, Dual simplex method.			02
J	Programming	5.2	Artificial variables, Big –M method (method of penalty). Revised and two phase simplex methods.	2,5,5	03
5	Mathematical	5.1	Introduction to Linear Programming problems and its formulation. Graphical method to solve LPP in two variables, Simplex method to solve LPP	2,3,5	03
		4.3	Inverse Z transform: Method of Partial fraction.		02
	Z transform	4.2	Properties of Z-transform :Linearity, Change of scale, Shifting property, Multiplication of K, Initial and final value, Convolution theorem (all without proof).	1,2	02
3		4.1	Z-transform of standard functions such as Z(a ⁿ), Z(cos ak), Z(sin ak), etc.		01
		3.4	Orthogonal and Orthonormal functions, Complex form of Fourier series.		02
	Fourier series	3.3	Half range sine and cosine Fourier series, Parsevel's identities (without proof).		02
		3.2	Fourier series for even and odd functions	1,2,3	02
		3.1	Introduction to Fourier Series, Dirichlet's conditions of convergences, Fourier series of periodic functions with period 2π and $2L$.		04
		2.4	Application to solving Differential Equations with given initial conditions.		02
		2.3	Inverse Laplace transform with Partial fraction and Convolution theorem (without proof).		04

References:

- 1. Kreyszig, "Advanced Engineering Mathematics", 9thedition, John Wiley
- 2. C. Ray Wylie & Louis Barrett, "Advanced Engg. Mathematics", 6th Edition, New York: McGraw-Hill, c1995.
- 3. K. B. Datta, "Mathematical Methods of Science and Engineering", 1st edition, Cengage Learning India, 2011
- 4. M. R. Spiegel, "Laplace Transforms", McGraw-Hill Education (1 January 1965)
- 5. David G. Luenberger," *Introduction to Linear and Nonlinear Programming*", Addison-Wesley Publishing Company.