

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
		3	1	-	3	1	-	4
IT33	Discrete Structures	Examination Scheme						
		ISE			MSE	ESE		
		10			30 100 (60%weightage)		age)	

Pre-requisite Course				
Codes				
After successful completion of the course, student will be able to:				
	CO1	Make use of logic and various proof techniques to solve		
		problems.		
	CO2	Apply the concepts of set, relations to solve problems		
Course Outcomes	CO3	Apply the concepts of functions to various technical domains.		
	CO4	Solve problems using graphs and trees.		
	CO5	Use fundamental concepts of algebraic structures, lattice to		
		solve problems		

Module	Unit	Unit Topics		Hrs.
No.	No.			
1	1	1 Logics and Proofs : Predicates, Quantifiers, Propositions,		06
		Conditional Propositions, Logical Connectivity, Proposition		
		calculus, Universal and Existential Quantifiers, Equivalence,		
		Normal Forms, Introduction to proofs, Mathematical Induction,		
		Logical inference		
2	2.1	Set theory:- Sets, Venn diagram, Operations on set, laws of set	1,6	04
		theory, partitions of set, types of sets, The principle of Inclusion		
		and Exclusion		
	2.2	Relations:- relations, equivalence relation, partial order relation,	3,6	04
		binary relation, Digraphs, posets and Hasse diagram, recurrence		
		relation, Chains and Anti chains, theorems on chains, transitive		
		closures, Warshall's algorithm		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	2.3	Functions:- Injective, Surjective, Bijective, Inverse, Composition,	1	04
		Identity, Graph of a function. Pigeon-hole principle		
	2.4	Recursive function:- series, sequences, recurrence relation	1	03
		Applications – Divide-and-Conquer algorithm		
3	3.1	Graphs:- Basic terminology, Eulerian graph, Bipartite graph,	4,6	04
		Hamiltonian graph, planar graph, subgraphs Isomorphism of graph		
		and subgraphs, cliques, connected components, Maximum flow and		
		minimal cut edges, Chromatic number, Graph color problem		
	3.2	Applications of Graph theory:- maximum matching using	4,6	04
		augmenting paths, perfect matching in bipartite graphs, Chinese		
		postman problem,		
4	4	Trees:- weighted trees, spanning trees, minimum spanning trees,	1,5	03
		isomorphism of trees, Kruskal's algorithm for minimal spanning		
		tree. Prim's algorithms for minimal spanning tree.		
5	5	Algebric structures:- semigroup, monoids and groups, Isomorphism,	1,3	05
		Homomorphism, Automorphism Cyclic groups, Codes and group		
		codes		
6	6	Lattice theory: Lattices and algebras systems, principles of duality,	2,3	05
		basic properties of algebraic systems defined by lattices, distributive		
		and complimented lattices, Boolean lattices and Boolean algebras,		
		uniqueness of finite Boolean expressions, prepositional calculus,		
		Coding theory: Coding of binary information and error detection,		
		decoding and error correction		
Total				42

References:

- Kenneth H. Rosen "Discrete Mathematics and it's applications", 7th edition, Tata McGraw-Hill
- 2. Bernad Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, "*Discrete Mathematical Structures*", 4th edition, Pearson Education.
- C. L. Liu, "Elements of Discrete Mathematics", 2nd edition, Tata McGraw-Hill, 2002, ISBN: 0-07-043476-X.
- 4. Douglas B. West, "Introduction to graph Theory", 2nd edition, PHI publication.
- 5. Joe L. Mott, Abraham Kandel, Theodore P. Baker "*Discrete mathematics for computer scientists and mathematicians*", 2nd edition, Reston Publishing Company
- 6. S.K.Yadav, "Discrete Mathematics and Graph Theory" 1st edition, Anne Books Pvt. Ltd