

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course Code			Teaching Scheme (Hrs/week)			Credits Assigned			
	Course Name	L	T	P	L	T	P	Total	
ITL42	Computer Organization and Architecture Lab	-	-	2	-	-	1	1	
		Examination Scheme							
		ISE			E	Total			
				Pra	actical Oral				
		4	10		-	2	20	60	

Pre-requisite Course Codes	IT32	IT32 (Digital Logic Design and Analysis)			
	IT42	(Computer Organization and Architecture)			
After successful completion of the course, student will be able to:					
	CO1	Identify the components of Computers and Assemble the			
		computer system.			
	CO2	Design ALU operations using Lab View and VHDL tool.			
	CO3	Apply data arithmetic algorithms for implementing			
Course Outcomes		arithmetic operations			
	CO4	Apply various memory management technique for memory			
		allocation and page replacement algorithms			
	CO5	Demonstrate I/O operations			
	CO6	Analyze the performance of the systems.			

Exp. No.	Experiment Details		Marks	
1	To recognize the components of computer, dismantling and		5	
	assembling of CPU.			
2	To demonstrate the working of Assembler using NASM.	6	5	
3	To simulate the ALU operations using Lab View.	1,7	5	
4	To implement various algorithms like Booth's algorithm, division by	2,3	5	
	restoration and non-restoration for arithmetic operations			
5	To implement page replacement and memory allocation algorithms.	2,3	5	
6	To implement the mapping techniques of Cache memory.	2,3	5	
7	To implement serial communication using RS232.	2,3	5	
8	Write a program that simulates the behavior of a pipelined processor	4	5	
	using open DLX simulator.			
Total Marks				

References:

1. Manual to use the simulator for computer organization and architecture. Developed by the Department of CSE, IIT Kharagpur (http://cse10-iitkgp.virtual-labs.ac.in/)

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- 2. William Stallings, "Computer Organization and Architecture: Designing for Performance", 9thEdition, Pearson, 2012.
- 3. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", 2nd edition, McGraw-Hill, 2010.
- 4. P. López. DLXide web page. http://www.gap.upv.es/people/plopez/english.html
- 5. https://youtu.be/obSsX7-ZwWc
- 6. Steven Armburst & Ted Forgen, "*Programmer's manual for IBM personal computers*", Intel handbook, Galgotia Publication Ltd.
- 7. Rick Bitter, Taqui Mohiuddin, Matt Nawrocki, "*Lab view: Advanced Programming Techniques*", 2nd edition, CRC Press.